

Volume III

ENVIRONMENTAL IMPACT STATEMENT APPENDICES: VOLUME 3, C to H

Moody Air Force Base Comprehensive Airspace Initiative

APPENDIX C. NOISE ANALYSIS RESULTS

FORMAT PAGE

April 2023

C-1. Department of the Air Force Land Use Compatibility Guidelines

FORMAT PAGE

The Department of the Air Force guidelines for land use compatibility in aircraft noise zones is shown in the table below and are extracted from Appendix A of Air Force Instruction (AFI) 32-7063 dated 15 July 2015. These land use compatibility guidelines have been included for reference purposes (**Table A-1**).

Table A-1. Land Use Compatibility Guidelines

SLUCM NO.	LAND USE NAME	DNL 65-69	DNL 70-74	DNL 75-79	DNL 80-84	DNL 85+
10	Residential					
11	Household units		N1	N	N	N
11.11	Single units: detached		N1	N	N	N
11.12	Single units: semidetached		N1	N	N	N
11.13	Single units: attached row	N1	N1	N	N	N
11.21	Two units: side-by-side	N1	N1	N	N	N
11.22	Two units: one above the other	N1	N1	N	N	N
11.31	Apartments: walk-up	N1	N1	N	N	N
11.32	Apartment: elevator	N1	N1	N	N	N
12	Group quarters	N1	N1	N	N	N
13	Residential hotels	N1	N1	N	N	N
14	Mobile home parks or courts	N	N	N	N	N
15	Transient lodgings	N1	N1	N1	N	N
16	Other residential	N1	N1	N	N	N
20	Manufacturing					
21	Food and kindred products; manufacturing	Y	Y2	Y3	Y4	N
22	Textile mill products; manufacturing	Y	Y2	Y3	Y4	N
23	Apparel and other finished products; products made from fabrics, leather, and similar materials; manufacturing	Y	Y2	Y3	Y4	N
24	Lumber and wood products (except furniture); manufacturing	Y	Y2	Y3	Y4	N
25	Furniture and fixtures; manufacturing	Y	Y2	Y3	Y4	N
26	Paper and allied products; manufacturing	Y	Y2	Y3	Y4	N
27	Printing, publishing, and allied industries	Y	Y2	Y3	Y4	N
28	Chemicals and allied	Y	Y2	Y3	Y4	N
29	Petroleum refining and related industries	Y	Y2	Y3	Y4	N
30	Manufacturing (continued)					
31	Rubber and misc. plastic products; manufacturing	Y	Y2	Y3	Y4	N
32	Stone, clay and glass products; manufacturing	Y	Y2	Y3	Y4	N
33	Primary metal products; manufacturing	Y	Y2	Y3	Y4	N
34	Fabricated metal products; manufacturing	Y	Y2	Y3	Y4	N
35	Professional scientific, and controlling instruments; photographic and optical goods; watches and clocks	Y	25	30	N	N
39	Miscellaneous manufacturing	Y	Y2	Y3	Y4	N
40	Transportation, communication and utilities					
41	Railroad, rapid rail transit, and street railway transportation	Y	Y2	Y3	Y4	N
42	Motor vehicle transportation	Y	Y2	Y 3	Y4	N
43	Aircraft transportation	Y	Y2	Y3	Y4	N
44	Marine craft transportation	Y	Y2	Y3	Y4	N

45	Highway and street right-of-way	Υ	Υ	Υ	Υ	N
46	Automobile parking		Υ	Υ	Y	N
47	Communication		255	305	N	N
48	Utilities		Y2	Y3	Y4	N
49	Other transportation, communication and utilities	Y	255	305	N	N
50	Trade	-				
51	Wholesale trade	Υ	Y2	Y3	Y4	N
52	Retail trade – building materials, hardware and farm	Y	25	30	Y4	N
52	equipment		23	30		
53	Retail trade – including shopping centers, discount clubs, home improvement stores, electronics	Y	25	30	N	N
54	superstores, etc. Retail trade – food	Υ	25	30	N	N
55	Retail trade – automotive, marine craft, aircraft and	Y	25	30	N	N
33	accessories		23	30	''	'
56	Retail trade – apparel and accessories	Y	25	30	N	N
57	Retail trade – furniture, home,	Υ	25	30	N	N
58	Retail trade – eating and drinking establishments	Υ	25	30	N	N
59	Other retail trade	Υ	25	30	N	N
60	Services					
61	Finance, insurance and real estate services	Y	25	30	N	N
62	Personal services	Y	25	30	N	N
62.4	Cemeteries	Y	Y2	Y3	Y4,11	Y6,11
63	Business services	Υ	25	30	N	N
63.7	Warehousing and storage	Υ	Y2	Y3	Y4	N
64	Repair services	Υ	Y2	Y3	Y4	N
65	Professional services	Υ	25	30	N	N
65.1	Hospitals, other medical facilities	25	30	N	N	N
65.16	Nursing homes	N1	N1	N	N	N
66	Contract construction services	Y	25	30	N	N
67	Government services	Y1	25	30	N	N
68	Educational services	25	30	N	N	N
68.1	Child care services, child development centers, and nurseries	25	30	N	N	N
69	Miscellaneous Services	Y	25	30	N	N
69.1	Religious activities (including places of worship)	Y	25	30	N	N
70	Cultural, entertainment and recreational					
71	Cultural activities	25	30	N	N	N
71.2	Nature exhibits	Y1	N	N	N	N
72	Public assembly	Υ	N	N	N	N
72.1	Auditoriums, concert halls	25	30	N	N	N
72.11	Outdoor music shells, amphitheaters	N	N	N	N	N
72.2	Outdoor sports arenas, spectator sports	Y	Υ	N	N	N
73	Amusements	Y	Υ	N	N	N
74	Recreational activities	Y	25	30	N	N
75	Resorts and group camps	Υ	25	N	N	N
76	Parks	Υ	25	N	N	N
79	Other cultural, entertainment and recreation	Y	25	N	N	N
80	Resource production and extraction					
81	Agriculture (except live- stock)	Y8	Y9	Y10	Y10,11	Y10,11

81.5-81.7	Agriculture-Livestock farming including grazing and feedlots	Y8	Y9	N	N	N
82	Agriculture related activities	Y8	Y9	Y10	Y10,11	Y10,11
83	Forestry activities	Y8	Y9	Y10	Y10,11	Y10,11
84	Fishing activities	Y	Y	Y	Υ	Y
85	Mining activities	Y	Y	Y	Y	Y
89	Other resource production or extraction	Y	Y	Υ	Υ	Υ

KEY:

SLUCM - Standard Land Use Coding Manual, U.S. Department of Transportation

Y (Yes) – Land use and related structures compatible without restrictions.

N (No) – Land use and related structures are not compatible and should be prohibited.

 Y^X – Yes with restrictions. The land use and related structures generally are compatible. However, see note(s) indicated by the superscript.

 N^{X} – No with exceptions. The land use and related structures are generally incompatible. However, see note(s) indicated by the superscript.

25, 30, or 35 – The numbers refer to noise level reduction (NLR) levels. NLR (outdoor to indoor) is achieved through the incorporation of noise attenuation into the design and construction of a structure. Land use and related structures are generally compatible; however, measures to achieve NLR of 25, 30, or 35 must be incorporated into design and construction of structures. However, measures to achieve an overall noise reduction do not necessarily solve noise difficulties outside the structure and additional evaluation is warranted. Also, see notes indicated by superscripts where they appear with one of these numbers.

DNL - Day-Night Average Sound Level.

CNEL - Community Noise Equivalent Level (normally within a very small decibel difference of DNL)

Ldn – Mathematical symbol for DNL.

NOTES:

1. General

- a. Although local conditions regarding the need for housing may require residential use in these zones, residential use is discouraged in DNL 65-69 and strongly discouraged in DNL 70-74. The absence of viable alternative development options should be determined and an evaluation should be conducted locally prior to local approvals indicating that a demonstrated community need for the residential use would not be met if development were prohibited in these zones. Existing residential development is considered as pre-existing, non-conforming land uses.
- b. Where the community determines that these uses must be allowed, measures to achieve outdoor to indoor NLR of at least 25 decibels (dB) in DNL 65-69 and 30 dB in DNL 70-74 should be incorporated into building codes and be considered in individual approvals; for transient housing, an NLR of at least 35 dB should be incorporated in DNL 75-79.
- c. Normal permanent construction can be expected to provide an NLR of 20 dB, thus the reduction requirements are often stated as 5, 10, or 15 dB over standard construction and normally assume mechanical ventilation, upgraded sound transmission class ratings in windows and doors, and closed windows year round. Additional consideration should be given to modifying NLR levels based on peak noise levels or vibrations.
- d. NLR criteria will not eliminate outdoor noise problems. However, building location, site planning, design, and use of berms and barriers can help mitigate outdoor noise exposure particularly from ground level sources. Measures that reduce noise at a site should be used wherever practical in preference to measures that only protect interior spaces.
- 2. Measures to achieve NLR of 25 must be incorporated into the design and construction of portions of these buildings where the public is received, office areas, noise sensitive areas, or where the normal noise level is low.
- 3. Measures to achieve NLR of 30 must be incorporated into the design and construction of portions of these buildings where the public is received, office areas, noise sensitive areas, or where the normal noise level is low.
- 4. Measures to achieve NLR of 35 must be incorporated into the design and construction of portions of these buildings where the public is received, office areas, noise sensitive areas, or where the normal noise level is low.

- 5. If project or proposed development is noise sensitive, use indicated NLR; if not, land use is compatible without NLR
- 6. Buildings are not permitted.
- 7. Land use is compatible provided special sound reinforcement systems are installed.
- 8. Residential buildings require an NLR of 25
- 9. Residential buildings require an NLR of 30.
- 10. Residential buildings are not permitted.
- 11. Land use that involves outdoor activities is not recommended, but if the community allows such activities, hearing protection devices should be worn when noise sources are present. Long-term exposure (multiple hours per day over many years) to high noise levels can cause hearing loss in some unprotected individuals.

April 2023

C-2. Air Operational Data

FORMAT PAGE

MOA SPECIFICATIONS

```
MOA name CORSAIR NORTH LOW MOA - 1000
     Lat
              Long
    (deg)
              (deg)
  31.50029
            84.10001
            -84.03334
  31.37945
  31.30028
            -84.01945
  31.00000
            -83.88306
  31.00000
            -83.46695
  31.33334
            -83.56390
  31.50029
            -84.10001
Floor =
          1000 feet AGL
                            Ceiling =
                                          8000 feet AGL
MOA name CORSAIR NORTH LOW MOA - 2000
    Lat
               Long
               (deg)
    (deg)
  31.50029
             -84,10001
  31.37945
            -84.03334
  31.30028
            -84.01945
  31.00000
             -83.88306
  31.00000
            -83.46695
  31.33334
            -83.56390
  31.50029
             -84.10001
           2000 feet AGL
                                         8000 feet AGL
Floor =
                            Ceiling =
MOA name CORSAIR NORTH LOW MOA - 4000
               Long
     Lat
    (deg)
               (deg)
  31.50029
             -84.10001
  31.37945
            -84.03334
  31.30028
            -84.01945
```

```
31.00000
            -83,88306
  31.00000 -83.46695
  31.33334 -83.56390
  31.50029
           -84,10001
Floor =
          4000 feet AGL
                            Ceiling =
                                       8000 feet AGL
MOA name CORSAIR NORTH MOA
    Lat
              Long
    (deg)
              (deg)
  31.50029
            -84.10001
 31.37945
           -84.03334
  31.30028
            -84.01945
  31.00000
            -83.88306
 31.00000
            -83,46695
 31.33334
            -83.56390
  31.50029 -84.10001
                            Ceiling - 18000 feet AGL
Floor -
          8000 feet AGL
MOA name CORSAIR SOUTH LOW MOA - 1000
              Long
    (deg)
              (deg)
 31.00000
           83.88306
 31.00000
           -83.46695
 30.61666
           -83.35555
           -83.71666
 30.63362
  31.00000
           -83.88306
                                        8000 feet AGL
Floor =
          1000 feet AGL
                            Ceiling =
MOA name CORSAIR SOUTH LOW MOA - 2000
    Lat
              Long
    (deg)
              (deg)
 31.00000
            -83.88306
 31.00000
            -83,46695
  30.61666
            -83.35555
 30.63362
            -83.71666
            -83,88306
 31.00000
Floor =
                            Ceiling =
                                         8000 feet AGL
          2000 feet AGL
MOA name CORSAIR SOUTH LOW MOA - 4000
              Long
    Lat
    (deg)
              (deg)
  31.00000
            -83.88306
  31.00000
           -83.46695
  30.61666
           -83,35555
  30.63362
            -83.71666
  31.00000
           -83,88306
Floor -
          4000 feet AGL
                            Ceiling - 8000 feet AGL
MOA name CORSAIR SOUTH MOA
    Lat
              Long
```

```
(deg)
               (deg)
  31.00000
             -83.88306
  31.00000
             -83,46695
  30.61666
             -83.35555
  30.63362
             -83.71666
  31.00000
             -83,88306
                             Ceiling = 18000 feet AGL
Floor =
           8000 feet AGL
MOA name GRAND BAY MOA AND R3008C
     Lat
               Long
               (deg)
    (deg)
  31.06694
             -83.01666
  30.85027
             -83.01666
  30.85027
             -83.13333
  30.89194
             -83.14999
  30.90861
             -83,10000
  31.02527
             -83,09999
  31.03361
             -83,14999
  31.06694
             -83.13333
  31.06694
             -83.01666
            100 feet AGL
                             Ceiling -
                                          8000 feet AGL
Floor -
MOA name HANG NORTH MOA
     Lat
               Long
    (deg)
               (deg)
  31.38306
             -83.16111
  30.95028
             -83.14139
  30.95028
             -82.64999
  31.21695
             -82,64999
  31.31140
            -82.74305
  31.38306
            -83.16111
Floor -
           8000 feet AGL
                             Ceiling -
                                         18000 feet AGL
MOA name HAWG SOUTH MOA
     Lat
               Long
    (deg)
               (deg)
  30.95028
             -83.14139
  30.60583
            -83.12556
  30.58361
             -82.64972
  30.95028
             -82.64999
  30.95028
            -83.14139
Floor =
           8000 feet AGL
                             Ceiling = 18000 feet AGL
MOA name LATN
     Lat
               Long
    (deg)
               (deg)
  32.06279
             -83.90001
  31.50029
             -84,10001
  30.63362
             -83,71666
  30.60583
             -83.12556
```

```
31.38306
            -83,16111
  32.06279
           -83,48334
  32.06279 -83.90001
           100 feet AGL
                            Ceiling -
                                         8000 feet AGL
Floor -
MOA name MOODY 2 NORTH MOA
     Lat
              Long
    (deg)
               (deg)
  30.95028
            -83.01666
  30.95028
            -82.64999
  31.02667
            -82.64999
  31.23362
            -82.81666
  31.30028
            -82.85000
  31.35028
            -83.01666
  30.95028
            -83.01666
Floor =
            500 feet AGL
                            Ceiling =
                                         8000 feet AGL
MOA name MOODY 2 NORTH MOA - 100
     Lat
              Long
    (deg)
               (deg)
  30.95028
           -83.01666
  30.95028
            82.64999
  31.02667
            -82.64999
  31.23362
            -82.81666
  31.30028
            -82.85000
  31.35028
            -83.01666
  30.95028
            -83.01666
Floor =
            100 feet AGL
                            Ceiling =
                                         8000 feet AGL
MOA name MOODY 2 SOUTH MOA
     Lat
              Long
    (deg)
               (deg)
  30.95028
            -83,01666
  30.60305
            -83.01666
  30.58361
             -82.64999
  30.95028
            -82,64999
  30.95028
            -83.01666
                            Ceiling =
           100 feet AGL
                                         8000 feet AGL
MOA name MUSTANG LOW MOA - 1000
     Lat
              Long
    (deg)
               (deg)
  32.07196
            -83.59445
  31.56834
            -83.63195
  31.49445
            -83.38334
  31.97196
            -83,39389
  32.06279
            -83.48334
  32.07196
            -83,59445
                            Ceiling -
                                         8000 feet AGL
Floor -
          1000 feet AGL
```

```
MOA name MUSTANG LOW MOA - 2000
               Long
     Lat
    (deg)
               (deg)
  32.07196
             -83.59445
  31.56834
             -83.63195
  31.49445
             -83.38334
  31.97196
             -83.39389
  32.06279
             -83.48334
  32.07196
             -83.59445
Floor =
           2000 feet AGL
                             Ceiling =
                                          8000 feet AGL
MOA name MUSTANG LOW MOA - 4000
     Lat
               Long
    (deg)
               (deg)
  32.07196
             -83.59445
  31.56834
            -83,63195
  31.49445
             -83.38334
  31.97196
             -83,39389
  32.06279
             -83,48334
  32.07196
             -83.59445
          4000 feet AGL
                             Ceiling - 8000 feet AGL
Floor -
MOA name MUSTANG MOA
     Lat
    (deg)
               (deg)
  32.07196
             -83.59445
  31.56834
            -83.63195
  31.49445
             -83.38334
            -83,39389
  31.97196
  32.06279
            -83.48334
  32.07196
            -83,59445
Floor -
           8000 feet AGL
                             Ceiling -
                                         18000 feet AGL
MOA name R3008AB
     Lat
               Long
    (deg)
               (deg)
  30.89194
             -83.14999
  30.90861
            -83.10000
  31.02527
             -83.09999
  31.03361
             -83.14999
  30.98694
             -83.16669
  30.95997
             -83.18475
  30.94738
            -83.16674
  30.89194
            -83,14999
Floor =
            100 feet AGL
                             Ceiling =
                                          8000 feet AGL
MOA name R3008C
     Lat
               Long
    (deg)
               (deg)
  31.06694
             -83.01666
```

```
30.85027
            -83,01666
  30.85027
            -83,13333
  30.89194
            -83,14999
  30.90861
            -83,10000
  31.02527
             -83.09999
  31.03361
             -83.14999
 31.06694
             -83.13333
 31.06694
            -83.01666
Floor =
            500 feet AGL
                            Ceiling =
                                          8000 feet AGL
MOA name SABRE MOA
    Lat
              Long
    (deg)
               (deg)
  31.68751
             -84.03334
 31.50029
            -84.10001
 31.33334
            -83,56390
 30.61666
            -83.35555
  30,60583
            -83,12556
 31.38306
            -83.16111
 31.49445
             83.38334
 31.68751
            -84.03334
           8000 feet AGL
                            Ceiling = 18000 feet AGL
Floor =
MOA name THUD LOW MOA
    Lat
              Long
    (deg)
              (deg)
  32.07196
            -83.59445
 32.08363
            -83.73751
 32.06279
            -83.90001
 31.68751
            -84.03334
 31.56834
            -83.63195
  32.07196
            -83.59445
           4000 feet AGL
Floor =
                            Ceiling =
                                         8000 feet AGL
MOA name THUD MOA
    Lat
              Long
    (deg)
               (deg)
  32.07196
            -83.59445
 32.08363
            -83.73751
 32.06279
            -83.90001
  31.68751
            -84.03334
 31.56834
            -83.63195
            -83.59445
  32.07196
Floor =
           8000 feet AGL
                            Ceiling = 18000 feet AGL
MOA name WARHAWK LOW MOA - 1000
    Lat
              Long
    (deg)
               (deg)
  31.97196
             -83.39389
 31.49445
            -83.38334
```

```
31.38306 -83.16111
  31.31140
          -82,74305
  31.97196 -83.39389
Floor - 1000 feet AGL
                            Ceiling -
                                        8000 feet AGL
MOA name WARHAWK LOW MOA - 2000
    Lat
              Long
    (deg)
              (deg)
  31.97196
            -83,39389
 31.49445
            -83.38334
 31.38306
            -83.16111
  31.31140
            -82.74305
  31.97196
            -83.39389
Floor = 2000 feet AGL
                            Ceiling =
                                        8000 feet AGL
MOA name WARHAWK LOW MOA - 4000
    Lat
              Long
    (deg)
              (deg)
 31.97196
            -83,39389
  31.49445
            -83.38334
 31.38306
            -83.16111
 31.31140
            82.74305
  31.97196
            -83.39389
Floor =
          4000 feet AGL
                            Ceiling =
                                       8000 feet AGL
MOA name WARHAWK MOA
    Lat
    (deg)
              (deg)
  31.97196
            -83,39389
  31.49445
           -83.38334
 31.38306
           -83,16111
 31.31140
           -82.74305
  31.97196 -83.39389
Floor - 8000 feet AGL
                            Ceiling - 18000 feet AGL
                 SPECIFIC POINT SPECIFICATION
Number of Specific points = 11
 Latitude
            Longitude
                           Name
  31.21328
            -83.74600
                          CORSAIR N POI
  30.81517
            -83.60754
                          CORSAIR 5 POI
 31.10161
            -82.86792
                          MOODY2N POI
  30.76693
           -82.84566
                          MOODY25 POI
            -83,49074
  31.74683
                          MUSTANG POI
  30.95783
            -83.16461
                          R3008A POI
  30.95604
            -83.12070
                          R3008B POI
  30.94930
            -83.05738
                          R3008C POI
  31.32796
            -83,38621
                          SABRE POI
  31.85989
            -83.76024
                          THUD POI
 31.58464
            -83.20150
                          WARHAWK POI
```

```
MISSION DATA
Mission name - CORSAIR N - EXISTING - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                       86.0
          Altitude Distribution
                Upper Alt
    Lower Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
     8000
                 23000
                             100.0
Mission name = CORSAIR N - EXISTING - A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                       93.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
     8000
                 23000
                             100.0
Mission name = CORSAIR N - EXISTING - A10_3
Aircraft code -FM0090102 Speed - 350 kias Power -
                                                       97.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
     8000
                 23000
                             100.0
Mission name = CORSAIR N - EXISTING - A29
Aircraft code =FM0870100 Speed = 120 kias Power =
                                                       30.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL) Utilization
     8000
                 23000
                             100.0
Mission name - CORSAIR N - EXISTING - A29_2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                       55.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
                (feet AGL)
   (feet AGL)
                            Utilization
     8000
                 23000
                             100.0
Mission name = CORSAIR N - EXISTING - A29_3
Aircraft code =FM0870102 Speed = 220 kias Power =
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
     8000
                 23000
                             100.0
```

```
Mission name - CORSAIR N - EXISTING - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                          80.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                (feet AGL)
                              Utilization
      8000
                  23000
                               100.0
Mission name = CORSAIR S - EXISTING - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                          86.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                (feet AGL)
                              Utilization
      8000
                  23000
                               100.0
Mission name = CORSAIR S - EXISTING - A10_2
Aircraft code -FM0090101 Speed - 250 kias Power -
                                                         93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                (feet AGL)
                              Utilization
      8000
                  23000
                              100.0
Mission name = CORSAIR S - EXISTING - A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                          97.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                                Percent
   (feet AGL)
                (feet AGL)
                              Utilization
      8000
                  23000
                               100.0
Mission name - CORSAIR S - EXISTING - A29
Aircraft code =FM0870100 Speed = 120 kias Power =
                                                          30.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                (feet AGL)
                              Utilization
      8000
                  23000
                              100.0
Mission name = CORSAIR S - EXISTING - A29_2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                          55.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                (feet AGL)
                              Utilization
      8000
                  23000
                               100.0
```

Mission name = CORSAIR S - EXISTING - A29_3

```
Aircraft code =FM0870102 Speed = 220 kias Power = 100.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
      8000
                  23000
                              100.0
Mission name = CORSAIR S - EXISTING - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                        80.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                             100.0
Mission name = HAWG N - EXISTING - A10
Aircraft code -FM0090100 Speed - 180 kias Power -
                                                        86.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name = HAWG N - EXISTING - A10 2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                       93.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                             100.0
Mission name - HAWG N - EXISTING - A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                       97.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
Mission name = HAWG N - EXISTING - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
           Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name = HAWG S - EXISTING - A10
Aircraft code -FM0090100 Speed - 180 kias Power -
           Altitude Distribution
```

```
Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name - HAWG S - EXISTING - A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                        93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name = HAWG S - EXISTING - A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                        97.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
Mission name = HAWG S - EXISTING - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name = LATN - EXISTING - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                        86.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = LATN - EXISTING - A10 2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                        93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
```

70 kias Power -

Percent

Utilization

0.0

Appendix C C-20

Mission name = LATN - EXISTING - H60 Aircraft code -FM6210100 Speed -

Lower Alt

(feet AGL)

Altitude Distribution

Upper Alt

(feet AGL)

```
100
                    1000
                                25.0
      1000
                    3000
                                 70.0
      3000
                    5000
                                  5.0
Mission name - LATN - EXISTING - H60_2
Aircraft code =FM6210101 Speed = 130 kias Power =
                                                            0.0
           Altitude Distribution
    Lower Alt
                  Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
       100
                    1000
                                25.0
      1000
                    3000
                                 70.0
      3000
                    5000
                                  5.0
Mission name = LATN - EXISTING - H60 3
Aircraft code -FM6210101 Speed - 130 kias Power -
                                                            0.0
           Altitude Distribution
                  Upper Alt
    Lower Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                               Utilization
       100
                    1000
                                25.0
      1000
                    3000
                                70.0
      3000
                    5000
                                  5.0
Mission name = MOODY 2N - EXISTING - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                           86.0
           Altitude Distribution
                  Upper Alt
    Lower Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                               Utilization
       500
                    1000
                                  5.0
      1000
                    3000
                                  5.0
      3000
                    5000
                                 30.0
      5000
                    8000
                                 60.0
Mission name = MOODY 2N - EXISTING - A10 2
Aircraft code =FM0090101 Speed = 250 kias Power =
           Altitude Distribution
    Lower Alt
                  Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                               Utilization
       500
                    1000
                                  5.0
      1000
                    3000
                                  5.0
      3000
                    5000
                                 30.0
      5000
                    8000
                                 60.0
Mission name = MOODY 2N - EXISTING - A10_3
Aircraft code -FM0090102 Speed - 350 kias Power -
           Altitude Distribution
```

Lower Alt	Upper Alt	Percent		
(feet AGL)	(feet AGL)	Utilization		
500	1000	5.0		
1000	3000	5.0		
3000	5000	30.0		
5000	8000	60.0		
Mission name =				
		peed = 120 kias	Power =	30.0
	itude Distrib			
Lower Alt		Percent		
(feet AGL)		Utilization		
500	1000	5.0		
1000	3000	5.0		
3000	5000	30.0		
5000	8000	60.0		
Mission name =	MOODY 2N - E	XISTING - A29 2		
		peed - 180 kias	Power -	55.0
	itude Distrib			
Lower Alt	Upper Alt	Percent		
(feet AGL)	(feet AGL)	Percent Utilization		
500	1000	5.0		
1000	3000	5.0		
3000	5000	30.0		
5000	8000	60.0		
Mission name =	MDODY 2N - E	XISTING - A29 3		
Aircraft code		peed – 220 kias	Power -	100.0
	Upper Alt			
(feet AGL)	(feet AGL)	Utilization		
500	1000	5.0		
1000	3000	5.0		
3000	5000	30.0		
5000	8000	60.0		
Mission name =	MOODY 2N E	VISTING 6120		
		peed = 150 kias	Dower -	800 A
	itude Distrib		romet =	GOO. O
	Upper Alt			
(feet AGL)		Utilization		
500	1000	5.0		
1000	3000	15.0		
3000	5000	30.0		
5000	8000	50.0		
2000	2300			

```
Mission name = MOODY 2N - EXISTING - C130_2
Aircraft code -FM0290401 Speed - 220 kias Power - 1800.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = MOODY 2N - EXISTING - C130_3
Aircraft code =FM0290402 Speed = 250 kias Power = 4700.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = MOODY 2N - EXISTING - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                        80.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                                5.0
                   5000
      3000
                               10.0
      5000
                   8000
                               80.0
Mission name - MOODY 2N - EXISTING - H60
Aircraft code =FM6210100 Speed = 70 kias Power =
                                                         0.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                               25.0
      1000
                   3000
                               70.0
      3000
                   5000
                                5.0
Mission name = MOODY 2N - EXISTING - H60_2
Aircraft code -FM6210102 Speed - 100 kias Power -
                                                         0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
```

```
500
                   1000
                               25.0
      1000
                   3000
                               70.0
      3000
                   5000
                                5.0
Mission name - MOODY 2N - EXISTING - H60_3
Aircraft code =FM6210101 Speed = 130 kias Power =
                                                          0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
                (feet AGL)
   (feet AGL)
                             Utilization
       500
                   1000
                               25.0
      1000
                   3000
                               70.0
      3000
                   5000
                                5.0
Mission name = MOODY 2S - EXISTING - A10
Aircraft code -FM0090100 Speed - 180 kias Power -
                                                         86.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = MOODY 2S - EXISTING - A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                         93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
                   1000
       500
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = MOODY 2S - EXISTING - A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                         97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                               60.0
Mission name - MOODY 2S - EXISTING - A29
Aircraft code =FM0870100 Speed = 120 kias Power =
                                                         30.0
```

Appendix C C-24

```
Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = MOODY 2S - EXISTING - A29_2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                         55.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
                (feet AGL)
   (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                                5.0
                   5000
      3000
                               30.0
      5000
                   8000
                               60.0
Mission name - MOODY 2S - EXISTING - A29_3
Aircraft code =FM0870102 Speed = 220 kias Power = 100.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name - MOODY 2S - EXISTING - C130
Aircraft code =FM0290400 Speed = 150 kias Power =
                                                       800.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = MOODY 2S - EXISTING - C130 2
Aircraft code =FM0290401 Speed = 220 kias Power = 1800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
```

5000

30.0

3000

```
5000
                    8000
                                50.0
Mission name - MOODY 2S - EXISTING - C130_3
Aircraft code =FM0290402 Speed = 250 kias Power = 4700.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
       500
                    1000
                                  5.0
      1000
                    3000
                                15.0
      3000
                    5000
                                30.0
      5000
                    8000
                                50.0
Mission name = MOODY 2S - EXISTING - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
       500
                    1000
                                  5.0
      1000
                    3000
                                  5.0
      3000
                    5000
                                10.0
      5000
                    8000
                                80.0
Mission name = MOODY 2S - EXISTING - H60
Aircraft code =FM6210100 Speed =
                                     70 kias Power =
                                                            0.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
       500
                    1000
                                25.0
      1000
                    3000
                                70.0
      3000
                    5000
                                  5.0
Mission name - MOODY 2S - EXISTING - H60_2
Aircraft code =FM6210102 Speed = 100 kias Power =
                                                            0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
       500
                    1000
                                25.0
      1000
                    3000
                                70.0
      3000
                    5000
                                  5.0
Mission name = MOODY 2S - EXISTING - H60_3
Aircraft code -FM6210101 Speed - 130 kias Power -
                                                            0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
```

```
500
                  1000
                              25.0
      1000
                   3000
                               70.0
      3000
                   5000
                               5.0
Mission name - MUSTANG - EXISTING - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                       86.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
      8000
                  23000
                             100.0
Mission name = MUSTANG - EXISTING - A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                       93.0
          Altitude Distribution
                Upper Alt
    Lower Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
      8000
                 23000
Mission name = MUSTANG - EXISTING - A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                       97.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
      8000
                 23000
                             100.0
Mission name = MUSTANG - EXISTING - F35
Aircraft code =FM0890200 Speed = 350 kias Power =
                                                        75.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
      8000
                 23000
                             100.0
Mission name = MUSTANG - EXISTING - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                       80.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                 23000
                             100.0
Mission name = R3008AB - EXISTING - A10
Aircraft code -FM0090100 Speed - 180 kias Power -
                                                       86.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
```

```
100
                   1000
                                5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = R3008AB - EXISTING - A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                         93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = R3008AB - EXISTING - A10_3
Aircraft code -FM0090102 Speed - 350 kias Power -
                                                         97.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = R3008AB - EXISTING - A29
Aircraft code =FM0870100 Speed = 120 kias Power =
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                 5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = R3008AB - EXISTING - A29 2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                         55.0
           Altitude Distribution
    Lower Alt
                               Percent
                 Upper Alt
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
```

```
Mission name = R3008AB - EXISTING - A29 3
Aircraft code -FM0870102 Speed - 220 kias Power - 100.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = R3008AB - EXISTING - C130
Aircraft code =FM0290400 Speed = 150 kias Power = 800.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = R3008AB - EXISTING - C130 2
Aircraft code =FM0290401 Speed = 220 kias Power = 1800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name - R3008AB - EXISTING - C130_3
Aircraft code =FM0290402 Speed = 250 kias Power = 4700.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = R3008AB - EXISTING - F35
Aircraft code =FM0890200 Speed = 350 kias Power =
                                                        75.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                5.0
```

```
1000
                   3000
                                5.0
      3000
                   5000
                               10.0
      5000
                   8000
                               80.0
Mission name - R3008AB - EXISTING - H60
Aircraft code =FM6210100 Speed =
                                   70 kias Power =
                                                         0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
                (feet AGL)
   (feet AGL)
                             Utilization
       100
                   1000
                               25.0
      1000
                   3000
                               70.0
      3000
                   5000
                                5.0
Mission name = R3008AB - EXISTING - H60 2
Aircraft code -FM6210102 Speed - 100 kias Power -
                                                         0.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                               25.0
      1000
                   3000
                               70.0
      3000
                   5000
                                5.0
Mission name = R3008AB - EXISTING - H60 3
Aircraft code =FM6210102 Speed = 130 kias Power =
                                                         0.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                               25.0
      1000
                   3000
                               70.0
      3000
                   5000
                                5.0
Mission name - R3008C - EXISTING - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                         86.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name - R3008C - EXISTING - A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                        93.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
```

```
(feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
Mission name = R3008C - EXISTING - A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                         97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                              Utilization
       500
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                                60.0
Mission name - R3008C - EXISTING - A29
Aircraft code =FM0870100 Speed = 120 kias Power =
                                                         30.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                              Utilization
       500
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                               60.0
Mission name = R3008C - EXISTING - A29 2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                         55.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                              Utilization
       500
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                                60.0
Mission name = R3008C - EXISTING - A29 3
Aircraft code =FM0870102 Speed = 220 kias Power =
                                                        100.0
           Altitude Distribution
                               Percent
    Lower Alt
                 Upper Alt
   (feet AGL)
                (feet AGL)
                              Utilization
       500
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                                60.0
```

```
Mission name - R3008C - EXISTING - C130
Aircraft code =FM0290400 Speed = 150 kias Power =
                                                       800.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = R3008C - EXISTING - C130_2
Aircraft code =FM0290401 Speed = 220 kias Power = 1800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
                             Utilization
   (feet AGL)
                (feet AGL)
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = R3008C - EXISTING - C130_3
Aircraft code =FM0290402 Speed = 250 kias Power = 4700.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                               5.0
      1000
                   3000
                               15.0
                   5000
      3000
                               30.0
      5000
                   8000
                               50.0
Mission name = R3008C - EXISTING - F35
Aircraft code -FM0890200 Speed - 350 kias Power -
                                                        75.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               10.0
      5000
                   8000
                               80.0
Mission name = R3008C - EXISTING - H60
Aircraft code -FM6210100 Speed - 70 kias Power -
                                                         0.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
```

```
500
                   1000
                               25.0
      1000
                   3000
                               70.0
      3000
                   5000
                                5.0
Mission name - R3008C - EXISTING - H60_2
Aircraft code =FM6210102 Speed = 110 kias Power =
                                                         0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
                (feet AGL)
   (feet AGL)
                             Utilization
       500
                   1000
                               25.0
      1000
                   3000
                               70.0
      3000
                   5000
                                5.0
Mission name = R3008C - EXISTING - H60 3
Aircraft code -FM6210101 Speed - 130 kias Power -
                                                         0.0
           Altitude Distribution
                Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      500
                   1000
                               25.0
      1000
                   3000
                               70.0
      3000
                   5000
                                5.0
Mission name = SABRE - EXISTING - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                        80.0
           Altitude Distribution
                Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name - SABRE - EXISTING - F35
Aircraft code =FM0890200 Speed = 350 kias Power =
                                                        75.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                             100.0
Mission name = THUD - EXISTING - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                        86.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
```

Mission name = THUD - EXISTING - A10_2

```
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                         93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                               100.0
Mission name = THUD - EXISTING - A10 3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                         97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
      8000
                  23000
                               100.0
Mission name = THUD - EXISTING - F18
Aircraft code -FM0450100 Speed - 350 kias Power -
                                                         80.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                              Utilization
      8000
                  23000
                               100.0
Mission name = THUD - EXISTING - F35
Aircraft code =FM0890200 Speed = 350 kias Power =
                                                         75.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                (feet AGL)
                              Utilization
      8000
                  23000
                              100.0
Mission name - WARHAWK - EXISTING - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                         86.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                (feet AGL)
                              Utilization
      8000
                  23000
Mission name = WARHAWK - EXISTING - A10 2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                         93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
                (feet AGL)
                              Utilization
   (feet AGL)
      8000
                  23000
                               100.0
Mission name = WARHAWK - EXISTING - A10_3
Aircraft code -FM0090102 Speed - 350 kias Power -
           Altitude Distribution
```

Lower Alt	Upper Alt	Percent
(feet AGL)	(feet AGL)	Utilization
8000	23000	100.0

Mission name - WARHAWK - EXISTING - F18
Aircraft code =FM0450100 Speed = 350 kias Power = 80.0
Altitude Distribution
Lower Alt Upper Alt Percent
(feet AGL) (feet AGL) Utilization
8000 23000 100.0

Mission name = WARHANK - EXISTING - F35
Aircraft code =FM0890200 Speed = 350 kias Power = 75.0
Altitude Distribution
Lower Alt Upper Alt Percent
(feet AGL) (feet AGL) Utilization
8000 23000 100.0

MOA OPERATION DATA MOA name = CORSAIR NORTH MOA

Daily Monthly Yearly Mission Day Night. Day Night Day Night Time On Range OPS OPS OPS OPS OPS OPS (minutes) CORSAIR N - EXISTING - A10 3.739 0.417 112.17 12,50 1346. 150. 12. CORSAIR N - EXISTING - A10 2 3.739 0.417 112.17 12.50 1346. 150. CORSAIR N - EXISTING - A10_3 3.739 0.417 112.17 12.50 1346. 150. CORSAIR N - EXISTING - A29 0.467 0.025 14.00 0.75 9. 168. 8. CORSAIR N - EXISTING - A29_2 0.467 0.025 14.00 0.75 168. 9. CORSAIR N - EXISTING - A29 3 0.467 0.025 14.00 0.75 9. 25. 168. 0.619 18.58 CORSAIR N - EXISTING - F18 0.033 1.00 223. 12. 33.

MOA name = CORSAIR SOUTH MOA

Daily

Monthly Yearly

	Mission			Day	Night	Day
Night	Day Name	67457633	Time On Range	OPS	OPS	ops
OPS	OPS	OPS	(minutes)			
		 EXISTING - 	A10	2.242	0.250	67.25
7.50	807.	90.	12.			
	CORSAIR S	- EXISTING -	A10_2	2.242	0.250	67.25
7.50		90.	42.			
		- EXISTING -	A10_3	2.242	0.250	67.25
7.50		90.	6.			
		EXISTING - A		1.389	0.072	41.67
2.17		26.	8.			
		EXISTING -)		1.389	0.072	41.67
2.17		26.	47.	con research	200222	10.011.032
		EXISTING - A		1.389	0.072	41.67
2.17		26.	24.	120 222	25/22/25	250,500
2 88		EXISTING - 1		0.864	0.044	25.92
1,33	311.	16.	30.			
1	MOA name - H	AWG NORTH MO	A	2.2	28	
	40m35	1200007405		Dai	ly	
Month.		Yearly				
	Mission			Day	Night	Day
Night	100 C	Night	Time On Range	OPS	OPS	OPS
OPS	Name OPS	OPS	(minutes)	OPS	OPS	OPS
UPS		ISTING - A10	(minutes)	7.850	0.872	235.50
26.17		314.	10.	7.050	0.672	233.30
20.17		ISTING - A10	317.	7.850	0.872	235.50
26.17		314.	-^ 35.	7.030	0.072	233.30
20.17		ISTING - A10		7,850	0.872	235.50
26.17		314.	5.	7.050	0.072	255.50
20,17		ISTING - F18		0.194	0.011	5.83
0.33		4.	116.		01011	21,00
23	MOA name = U	AWG SOUTH MO	A:			
	TOX Traile - (1	AKA SOOTI NO	•	Dai	1v	
Month:	lv.	Yearly			-,	
rion cit.	Mission	rear Ly		Day	Night	Day
Night		Night	Time On Range	y	a. B.	y
W-Purc	Name	MERICA	Tame on mange	OPS	OPS	OPS
OPS	OPS	OPS	(minutes)			
20126		ISTING - A10	(marm coo)	7.850	0.872	235.50
26.17		314.	10.	4.5	F(10)(10)	
		ISTING - A10		7,850	0.872	235.50
26.17		314.	35.		executions.	
20.000		ISTING - A10		7,850	0.872	235.50
26.17		314.	5.			

	HAWG S - EXISTIN	VG - F18		0.194	0.011	5.83
0.33	70.	4.	116.			
29	MOA name = LATN					
	HOR Halle = LATH			Dail	V	
Month:	lv	Yearly			2	
	Mission	1.0001001		Day	Night	Day
Night		Night 1	ime On Range		583	
	Name			OPS	OPS	OPS
OPS	OPS	OPS	(minutes)			
	LATN - EXISTING	- A10		7.850	0.872	235.50
26.17	2826.	314.	2.			
	LATN - EXISTING	- A10_2		7.850	0.872	235.50
26.17	2826.	314.	8.			
	LATN - EXISTING	- A10_3		7.850	0.872	235.50
26.17	2826.	314.	1.			
	LATN - EXISTING	- C130		1.419	1.336	42.58
40.08	511.	481.	3.			
	LATN - EXISTING	- C130_2		1.419	1.336	42.58
40.08	511.	481.	24.			
	LATN - EXISTING	- C130_3		1.419	1.336	42.58
40.08	511.	481.	3.			
	LATN - EXISTING	- H60		2.961	0.786	88.83
23.58	1066.	283.	2.			
	LATN - EXISTING	- H60_2		2.961	0.786	88.83
23.58	1066.	283.	25.			
	LATN - EXISTING	- H60_3		2.961	0.786	88.83
23.58	1066.	283.	4.			
1	MOA name - MOODY	2 NORTH MO)A	88 98		
	4 7720	1200 000 1200 1		Dail	y	
Month.		Yearly				
	Mission			Day	Night	Day
Night		Night 1	ime On Range	one	055	005
CORC	Name	ione	Zastanotono V	OPS	OPS	OPS
OPS	OPS	OPS	(minutes)	7 950	0.973	225 50
26 47	MOODY 2N - EXIST		7400	7.850	0.872	235.50
26.17	2826.	314.	4.	7.850	0.872	235.50
26.17	MOODY 2N - EXIST 2826.	314.	14.	7.850	0.872	233.30
20.17	MOODY 2N - EXIST			7.850	0.872	235.50
26.17		314.	2.	7.030	0.072	233.30
20.17	MOODY 2N - EXIST		2.	1.850	0.097	55.50
2,92		35.	16.	1.030	M+M21	22.30
2.32	MOODY 2N - EXIST			1.850	0.097	55.50
2.92		35.	52.	1.050	2,021	23.30
	MOODY 2N - EXIST			1,850	0.097	55.50
2.92	666.	35.	18.			
857.876.83	500000	C-100 To 1	147-03-032			

		EXISTING - C	130	0.378	0.356	11.33
10.67			3.			
	MOODY 2N -	EXISTING - C	130_2	0.378	0.356	11.33
10.67	136.	128.	24.			
	MOODY 2N -	EXISTING - C	130_3	0.378	0.356	11.33
10.67			3.			
		EXISTING - F		1.400	0.075	42.00
2.25			43.			
		EXISTING - H		1.972	0.525	59.17
15.75			8.	72 72 22	01202	
		EXISTING - H		1.972	0.525	59.17
5.75		3500000000	124.			
		EXISTING - H	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.972	0.525	59.17
15,75	710.	189.	18.			
ä	MOA name - I	MOODY 2 SOUTH	I MOA			
			2010207	Dai	1v	
Month.	lν	Yearly			35	
	Mission			Day	Night	Day
Night	Day	Night	Time On Range	1000 9 01	500. E0000	
	Name	600 A		OPS	OPS	OPS
OPS	OPS	OPS	(minutes)			
	MOODY 25 -	EXISTING - A	110	7.850	0.872	235.50
26.17	2826.	314.	4.			
	MOODY 25 -	EXISTING - A	110_2	7.850	0.872	235.50
6.17	2826.	314.	14.			
	MOODY 25 -	EXISTING - A	A10_3	7.850	0.872	235.50
26.17			2.			
	MOODY 25 -	EXISTING - A	129	1.911	0.100	57.33
3,00	688.	36.	16.			
		EXISTING - A	10000 00 00 00000	1.911	0.100	57.33
3,00			52.			
		EXISTING - A	10000 00 00	1.911	0.100	57.33
3.00			18.			
		EXISTING - C		0.378	0.356	11.33
10.67			3.			
		EXISTING - 0		0.378	0.356	11.33
10.67			24.			
		EXISTING - 0	SCOTO CONTRACTOR CONTR	0.378	0.356	11.33
10.67			3.	2 222		
		EXISTING - F		1.369	0.072	41.08
2.17			43.	4 670	0 505	F0 07
E 25		EXISTING - H		1.972	0.525	59.17
15.75		189.	8.	4 676	0.505	FA 47
ır		EXISTING - H	11 7 1 7 1 1 1 1 1 1 1 1 1	1,972	0.525	59.17
15,75			124.	4 673	0 505	F6 17
15.75		EXISTING - F	9574. 575 77	1.972	0.525	59.17
15,75	710.	189.	18.			

Appendix C C-38

A	MOA name – MUSTANG M	OA	Dai	1v	
Month:	ly Yea	rlv	001	19	
	Mission	3.55	Day	Night	Day
Night		ht Time On Range			
	Name		OPS	OPS	OPS
OPS	OPS OP	S (minutes)			
	MUSTANG - EXISTING	22763242 300	3.450	0.383	103.50
11.50		8. 12.			
	MUSTANG - EXISTING	- A10 2	3,450	0.383	103.50
11.50	1242. 13	8. 42.			
	MUSTANG - EXISTING	- A10 3	3,450	0.383	103.50
11.50	1242. 13	8. 6.			
	MUSTANG - EXISTING	- F35	0.758	0.039	22.75
1.17	273. 1	4. 38.			
	MUSTANG - EXISTING	- F18	1,239	0.064	37.17
1,92	446. 2	3. 30.			
	MOA name - R3008AB		Dai	lv	
Month:	ly Yea	rlv		-,	
	Mission	1.73	Day	Night	Day
Night		ht Time On Range			
	Name		OPS	OPS	OPS
OPS	OPS OP	S (minutes)	159 1239 2	9343	600000
	R3008AB - EXISTING		7,850	0.872	235.50
26.17		4. 10.			
	R3008AB - EXISTING		7.850	0.872	235.50
26.17		4. 34.			
	R3008AB - EXISTING	- A10 3	7,850	0.872	235.50
26,17	2826. 31	4. 5.			
	R3008AB - EXISTING	- A29	2,761	0.144	82.83
4.33	994. 5	2. 3.			
	R3008AB - EXISTING	- A29 2	2,761	0.144	82.83
4.33	994. 5	2. 15.			
	R3008AB - EXISTING	- A29 3	2.761	0.144	82.83
4.33	994. 5	2. 7.			
	R3008AB - EXISTING	- C130	0.378	0.356	11.33
10.67	136. 12	8. 12.			
	R3008AB - EXISTING	- C130 2	0.378	0.356	11.33
10.67	136. 12	8. 96.			
	R3008AB - EXISTING	- C130_3	0.378	0.356	11.33
10.67	136. 12	8. 12.			
	R3008AB - EXISTING	- F35	0.031	0.003	0.92
0.08	11.	1. 32.			
	R3008AB - EXISTING	- H60	1.972	0.525	59.17
15,75	710. 18	9. 6.			
	R3008AB - EXISTING	- H60_2	1.972	0.525	59.17

15,75	710.	189.	99.			
	R3008AB - EXI	ISTING - H64	ð_3	1.972	0.525	59.17
15.75	710.	189.	15.			
ä	MOA name - R30	308C				
335	nor name (to			Dai	ly	
Month	lv	Yearly		5.00	-,	
	Mission			Day	Night	Day
Night		Night	Time On Range		tranenta.	
	Name			OPS	OPS	OPS
OPS	OPS	OPS	(minutes)			
	R3008C - EXIS			7,850	0.872	235.50
26.17		314.	2.			
0.70	R3008C - EXIS			7.850	0.872	235.50
26.17		314.	8.			
	R3008C - EXIS		3	7.850	0.872	235.50
26.17		314.	1.			
	R3008C - EXIS			2,761	0.144	82.83
4.33		52.	1.			
	R3008C - EXIS	STING - A29	2	2,761	0.144	82.83
4.33		52.	4.			
	R3008C - EXIS	STING - A29	3	2.761	0.144	82,83
4.33		52.	2.			
	R3008C - EXIS	STING - C130	9	0.378	0.356	11.33
10.67		128.	3.			
	R3008C - EXIS	STING - C13		0.378	0.356	11.33
10.67		128.	24.			
	R3008C - EXIS	STING - C130	9 3	0.378	0.356	11.33
10.67		128.	3.			
	R3008C - EXIS	STING - F35		0.031	0.003	0.92
0.08		1.	8.			
	R3008C - EXIS	STING - H60		1,972	0.525	59.17
15,75		189.	2.			
	R3008C - EXIS			1.972	0.525	59.17
15.75		189.	25.			
	R3008C - EXIS	STING - H60	3	1.972	0.525	59.17
15.75	710.	189.	4.			
- 33	MOA name = SAI	BRE MUA		Desi	ly	
Month	Tv.	Yearly		Dai	1 y	
Pionen		rearry		Day	Ni abt	Day
Might	Mission	Might	Time On Range	vay	Night	Day
Night	Day Name	argue	True on vange	OPS	OPS	OPS
OPS	Name OPS	ODE	(minutes)	UFS	UP3	UPS
UPS		OPS	(minutes)	0.864	0.044	25.92
1,33	SABRE - EXIST		32.	0.804	0.044	23.92
1.33	SABRE EXIST	16.	22.	0.047	0.003	1.42
	PMDVC EVI2	1140 - 135		0.047	0.005	1.42

17. 1.

0,08

			Dai	ly	
ly	Yearly				
Mission			Day	Night	Day
Day	Night	Time On Range			
Name			OPS	OPS	OPS
	OPS	(minutes)			
			3.450	0.383	103.50
	277777777	12.			
	- A10_2		3.450	0.383	103.50
	138.	42.			
THUD - EXISTING	- A10_3		3.450	0.383	103.50
1242.	138.	6.			
THUD - EXISTING	- F18		1.042	0.056	31.25
375.	20.	30.			
THUD - EXISTING	- F35		0.778	0.042	23.33
280.	15.	38.			
			Dai	ly	
The state of the s	Yearly				
	19 20		Day	Night	Day
	Night	Time On Range			
			OPS	OPS	OPS
경기에 가장하게 하지 않는데 하는데 하다 하는데 되었다.					
		1,5300	3.450	0.383	103.50
1242.	138.	12.			
	ING - 0.16	3 2	3,450	0.383	103.50
WARHAWK - EXIST:	1140 - 1414		3.450	0.505	105.50
1242.	138.	42.	3,450	0.505	103.50
	138.	42.	3,450	0.383	103.50
1242.	138.	42.	365 834 555 5	500 500 500 f	
1242. WARHAWK - EXIST: 1242. WARHAWK - EXIST:	138. ING - A10 138.	42. 3_3 6.	365 834 555 5	500 500 500 f	
1242. WARHAWK - EXIST: 1242.	138. ING - A10 138.	42. 3_3 6.	3,450	0.383	103.50
1242. WARHAWK - EXIST: 1242. WARHAWK - EXIST:	138. ING - A10 138. ING - F10 25.	42. 3_3 6. 8	3,450	0.383	103.50
	Mission	Mission	Mission Day Night Time On Range Name OPS OPS (minutes) THUD - EXISTING - A10 1242. 138. 12. THUD - EXISTING - A10-2 1242. 138. 42. THUD - EXISTING - A10-3 1242. 138. 6. THUD - EXISTING - F18 375. 20. 30. THUD - EXISTING - F35 280. 15. 38. MOA name = WARHAWK MOA Ly Yearly Mission Day Night Time On Range Name	Mission Day Night Time On Range Name OPS OPS (minutes) THUD - EXISTING - A10 3.450 1242. 138. 12. THUD - EXISTING - A10_2 3.450 1242. 138. 42. THUD - EXISTING - A10_3 3.450 1242. 138. 6. THUD - EXISTING - F18 1.042 375. 20. 30. THUD - EXISTING - F35 280. 15. 38. MOA name = WARHAWK MOA Daily Yearly Mission Day Night Time On Range Name OPS OPS (minutes)	Mission Day Night Time On Range Name OPS OPS OPS OPS OPS (minutes) THUD - EXISTING - A10 3.450 0.383 1242. 138. 12. THUD - EXISTING - A10 2 3.450 0.383 1242. 138. 42. THUD - EXISTING - A10 3 3.450 0.383 1242. 138. 6. THUD - EXISTING - F18 3.450 0.383 1242. 138. 6. THUD - EXISTING - F18 3.0. THUD - EXISTING - F18 3.75. 20. 30. THUD - EXISTING - F35 0.778 0.042 280. 15. 38. MOA name = NARHANK MOA Daily Mission Day Night Time On Range Name OPS OPS OPS OPS OPS OPS

the recommended grid spacing is less than 1000 feet.

40.

***** MOA RANGE NOISEMAP ***** RESULTS

The noise metric is Ldnmr.

NOA							MOA	RESU	LTS		
MOA								Ur	niform	1	lumber
Name Area Sound Level SEL of	of										
Name		MOA					MOA	Di	stributed	Da	aily
CORSAIR NORTH LOW MOA - 1000 CORSAIR NORTH LOW MOA - 2000 CORSAIR SOUTH LOW MOA - 1000 CORSAIR SOUTH LOW MOA - 2000 CORSAIR SOUTH MOA CORSAI	Events Abo	ve									
(sq statute miles) (dB)		Name					Area	Sou	und Level	SI	L of
CORSAIR NORTH LOW MOA - 1000 755.3 No operations on this	65.0 dB										
MOA! CORSAIR NORTH LOW MOA - 2000 755.3 No operations on this MOA! CORSAIR NORTH LOW MOA - 4000 755.3 No operations on this MOA! CORSAIR NORTH MOA 755.3 35.0 0.0 CORSAIR SOUTH LOW MOA - 1000 591.9 No operations on this MOA! CORSAIR SOUTH LOW MOA - 2000 591.9 No operations on this MOA! CORSAIR SOUTH LOW MOA - 4000 591.9 No operations on this MOA! CORSAIR SOUTH MOA 591.9 35.0 0.0 GRAND BAY MOA AND R3008C 89.2 No operations on this MOA! HAWG NORTH MOA 704.3 35.0 0.0 LATN 4200.0 35.0 0.0 LATN 4200.0 35.0 0.0 MOODY 2 NORTH MOA 100 420.7 44.1 0.0 MOODY 2 NORTH MOA 100 420.7 No operations on this MOA! MOODY 2 SOUTH MOA 100 420.7 No operations on this MOA! MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 470.3 No operations on this MOA! MUSTANG MOA 470.3 No operations on this MOA! MUSTANG MOA 470.3 No operations on this MOSTANG MOA 470.3 No operations on this						(sq	statute mi	les)	(dB)		
CORSAIR NORTH LOW MOA - 2000 755.3 No operations on this MOA! CORSAIR NORTH LOW MOA - 4000 755.3 No operations on this MOA! CORSAIR NORTH MOA 755.3 35.0 0.0 CORSAIR SOUTH LOW MOA - 1000 591.9 No operations on this MOA! CORSAIR SOUTH LOW MOA - 2000 591.9 No operations on this MOA! CORSAIR SOUTH LOW MOA - 4000 591.9 No operations on this MOA! CORSAIR SOUTH MOA 591.9 No operations on this MOA! HAMS SOUTH MOA 8008C 89.2 No operations on this MOA! HAMS NORTH MOA 779.1 35.0 0.0 MOA HAMS SOUTH MOA 704.3 35.0 0.0 MOA! HAMS SOUTH MOA 704.3 35.0 0.0 MOODY 2 NORTH MOA 1200 35.0 0.0 MOODY 2 NORTH MOA 1200 35.0 0.0 MOODY 2 NORTH MOA 1200 420.7 Mo operations on this MOA! MOODY 2 SOUTH MOA 1000 420.7 No operations on this MOA! MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA!	CORSA	IR NORTH L	NOM WO.	-	1000		755.3	No	operations	on	this
MOA! CORSAIR NORTH LOW MOA - 4000 755.3 No operations on this MOA! CORSAIR NORTH MOA 755.3 35.0 0.0 CORSAIR SOUTH LOW MOA - 1000 591.9 No operations on this MOA! CORSAIR SOUTH LOW MOA - 2000 591.9 No operations on this MOA! CORSAIR SOUTH LOW MOA - 4000 591.9 No operations on this MOA! CORSAIR SOUTH MOA 591.9 No operations on this MOA! CORSAIR SOUTH MOA 591.9 35.0 0.0 GRAND BAY MOA AND R3008C 89.2 No operations on this MOA! HAWG NORTH MOA 779.1 35.0 0.0 HAWG SOUTH MOA 704.3 35.0 0.0 HAWG SOUTH MOA 704.3 35.0 0.0 MOODY 2 NORTH MOA 420.0 35.0 0.0 MOODY 2 NORTH MOA 420.7 44.1 0.0 MOODY 2 NORTH MOA 100 420.7 No operations on this MOA! MOODY 2 SOUTH MOA 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 500.0 470.3 No operations on this MOA! MUSTANG MOA 500.0 470.3 No operations on this	MOA!										
CORSAIR NORTH LOW MOA - 4000 755.3 No operations on this MOA! CORSAIR NORTH MOA 755.3 35.0 0.0 CORSAIR SOUTH LOW MOA - 1000 591.9 No operations on this MOA! CORSAIR SOUTH LOW MOA - 2000 591.9 No operations on this MOA! CORSAIR SOUTH LOW MOA - 4000 591.9 No operations on this MOA! CORSAIR SOUTH MOA 591.9 35.0 0.0 GRAND BAY MOA AND R3008C 89.2 No operations on this MOA! HAWG NORTH MOA 779.1 35.0 0.0 HAWG SOUTH MOA 704.3 35.0 0.0 AMM MOODY 2 NORTH MOA 4200.0 35.0 0.0 MOODY 2 NORTH MOA 1000 420.7 No operations on this MOA! MOODY 2 SOUTH MOA 536.4 43.1 0.0 MOODY 2 NORTH MOA 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 470.3 No operations on this MOA! MUSTANG MOA 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 470.3 No operations on this MOA!	CORSA	IR NORTH L	NOM WO.	-	2000		755.3	No	operations	on	this
MOA! CORSAIR NORTH MOA	MOA!										
CORSAIR NORTH MOA CORSAIR SOUTH LOW MOA - 1000 591.9 No operations on this MOA! CORSAIR SOUTH LOW MOA - 2000 591.9 No operations on this MOA! CORSAIR SOUTH LOW MOA - 4000 591.9 No operations on this MOA! CORSAIR SOUTH MOA 591.9 35.0 0.0 GRAND BAY MOA AND R3008C 89.2 No operations on this MOA! HAWG NORTH MOA 779.1 35.0 0.0 4.0 HAWG SOUTH MOA 704.3 35.0 0.0 4.0 HAWG SOUTH MOA 704.3 35.0 0.0 4.0 HAWG SOUTH MOA 4200.0 35.0 0.0 4.0 HAWG SOUTH MOA 420.7 44.1 0.0 MOODY 2 NORTH MOA 420.7 No operations on this MOA! MOODY 2 NORTH MOA 420.7 No operations on this MOA! MOODY 2 SOUTH MOA 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 590.0 470.3 No operations on this MOA! MUSTANG MOA 590.0 470.3 No operations on this MOA! MUSTANG MOA 590.0 470.3 No operations on this MOA!	CORSA	IR NORTH L	AOM MO.	-	4000		755.3	No	operations	on	this
MOA! CORSAIR SOUTH LOW MOA - 1000 591.9 No operations on this MOA! CORSAIR SOUTH LOW MOA - 2000 591.9 No operations on this MOA! CORSAIR SOUTH LOW MOA - 4000 591.9 No operations on this MOA! CORSAIR SOUTH MOA 591.9 35.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	MOA!										
MOA! CORSATR SOUTH LOW MOA - 2000 591.9 No operations on this MOA! CORSATR SOUTH LOW MOA - 4000 591.9 No operations on this MOA! CORSATR SOUTH MOA 591.9 35.0 6.0 GRAND BAY MOA AND R3008C 89.2 No operations on this MOA! HAWG NORTH MOA 779.1 35.0 6.0 HAWG SOUTH MOA 704.3 35.0 6.0 LATN 4200.0 35.0 6.0 MOODY 2 NORTH MOA 4200.0 35.0 6.0 MOODY 2 NORTH MOA 4200.7 No operations on this MOA! MOODY 2 SOUTH MOA 536.4 43.1 6.0 MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA - 4000 470.3 No operations on this	CORSA	IR NORTH M	AOA								
CORSAIR SOUTH LOW MOA - 2000 591.9 No operations on this MOA! CORSAIR SOUTH LOW MOA - 4000 591.9 No operations on this MOA! CORSAIR SOUTH MOA 591.9 35.0 0.0 GRAND BAY MOA AND R3008C 89.2 No operations on this MOA! HAWG NORTH MOA 779.1 35.0 0.0 0.0 HAWG SOUTH MOA 704.3 35.0 0.0 0.0 LATN 4200.0 35.0 0.0 0.0 MOODY 2 NORTH MOA 420.7 44.1 0.0 MOODY 2 NORTH MOA 100 420.7 No operations on this MOA! MOODY 2 SOUTH MOA 536.4 43.1 0.0 MOODY 2 SOUTH MOA 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 470.3 No operations on this MOA! MUSTANG MOA 470.3 No operations on this MOA! MUSTANG MOA 470.3 39.1 0.0 R3008AB 59.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	CORSA	IR SOUTH L	AOM NO	-	1000		591.9	No	operations	on	this
MOA! CORSAIR SOUTH LOW MOA - 4000 591.9 No operations on this MOA! CORSAIR SOUTH MOA 591.9 35.0 0.0 GRAND BAY MOA AND R3008C 89.2 No operations on this MOA! HAWG NORTH MOA 779.1 35.0 0.0 HAWG SOUTH MOA 704.3 35.0 0.0 LATN 4200.0 35.0 0.0 MOODY 2 NORTH MOA 420.7 44.1 0.0 MOODY 2 NORTH MOA 420.7 No operations on this MOA! MOODY 2 SOUTH MOA 420.7 No operations on this MOA! MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this	MOA!										
CORSAIR SOUTH LOW MOA - 4000 591.9 No operations on this MOA! CORSAIR SOUTH MOA 591.9 35.0 6.0 GRAND BAY MOA AND R3008C 89.2 No operations on this MOA! HAMG NORTH MOA 779.1 35.0 6.0 HAMG SOUTH MOA 704.3 704.3 70.0 HAMG MOODY 2 NORTH MOA 700 420.7 No operations on this MOODY 2 NORTH MOA 100 420.7 No operations on this MOODY 2 SOUTH MOA 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 470.3 No operations on this MOA! MUSTANG MOA 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA!	CORSA	IR SOUTH L	AOM NO	8	2000		591.9	No	operations	on	this
MOA! CORSAIR SOUTH MOA 591.9 35.0 6.0 GRAND BAY MOA AND R3008C 89.2 No operations on this MOA! HAWG NORTH MOA 779.1 35.0 6.0 HAWG SOUTH MOA 764.3 35.0 6.0 HAWG SOUTH MOA 764.3 35.0 6.0 HAWG SOUTH MOA 764.3 35.0 6.0 HAWG SOUTH MOA 4200.0 35.0 6.0 HAWG MOODY 2 NORTH MOA 420.7 44.1 6.0 MOODY 2 NORTH MOA 100 420.7 No operations on this MOA! MOODY 2 SOUTH MOA 536.4 43.1 6.0 HAWG MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 39.1 6.0 R3008AB 470.3 39.1 6.0 HAWG MUSTANG MOA 470.3 34.1 59.7 6.0 HAWG MUSTANG MUS	MOA!										
CORSAIR SOUTH MOA 591.9 35.0 6.0 GRAND BAY MOA AND R3008C 89.2 No operations on this MOA! HAWG NORTH MOA 779.1 35.0 6.0 HAWG SOUTH MOA 704.3 35.0 6.0 6.0 LATN 4200.0 35.0 6.0 6.0 MOODY 2 NORTH MOA 4200.7 44.1 6.0 MOODY 2 NORTH MOA 100 420.7 No operations on this MOA! MOODY 2 SOUTH MOA 536.4 43.1 6.0 MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 39.1 6.0 R3008AB 470.3 39.1 6.0	CORSA	IR SOUTH L	OM MOA	÷	4000		591.9	No	operations	on	this
MOAT MUSTANG LOW MOA AND R3008C 89,2 No operations on this MOAT MUSTANG MOA AND R3008C 89,2 No operations on this MOAT MUSTANG MOA AND R3008C 89,2 No operations on this MOAT MUSTANG MOA AND R3008C 89,2 No operations on this MOAT MUSTANG MOA AND R3008C 89,2 No operations on this MOAT MUSTANG LOW MOA - 4000 470,3 No operations on this MOAT MUSTANG LOW MOA - 4000 470,3 No operations on this MOAT MUSTANG LOW MOA - 4000 470,3 No operations on this MOAT MUSTANG MOA - 4000 470,3 No operations on this MUSTANG MOA - 4000 470,3 No operations on this MUSTANG MOA - 4000 470,3 No operations on this MUSTANG MOA - 4000 470,3 No operations on this MUSTANG MOA - 4000 470,3 No operations on this MUSTANG MOA - 4000 470,3 No operations on this MUSTANG MOA - 4000 470,3 No operations on this MUSTANG MOA - 4000 470,3 No operations on this MUSTANG MOA - 4000 470,3 No operations on this MUSTANG MOA - 4000 470,3 No operations on this MUSTANG MOA - 4000 470,3 No operations on this MUSTANG MOA - 4000 470,3 No operations on this MUSTANG MOA - 4000 470,3 No operations on	MOA!										
MOAT HAWG NORTH MOA 779.1 35.0 0.0 HAWG SOUTH MOA 764.3 35.0 0.0 0.0 LATN 4200.0 35.0 0.0 0.0 MOODY 2 NORTH MOA 420.7 44.1 0.0 MOODY 2 NORTH MOA 100 420.7 No operations on this NOA! MOSTANG LOW MOA 1000 470.3 No operations on this MOA! MUSTANG LOW MOA 2000 470.3 No operations on this MOA! MUSTANG LOW MOA 2000 470.3 No operations on this MOA! MUSTANG LOW MOA 4000 470.3 No operations on this MOA! MUSTANG LOW MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! A70.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! A70.3 No operations on this MOA! A70.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! A70.3 No operations on this MOA!	CORSA	IR SOUTH M	AOV				591.9		35.0		0.0
HAWG NORTH MOA 779.1 35.0 0.0 HAWG SOUTH MOA 704.3 35.0 0.0 LATN 4200.0 35.0 0.0 MOODY 2 NORTH MOA 420.7 44.1 0.0 MOODY 2 NORTH MOA - 100 420.7 No operations on this NOA! MOODY 2 SOUTH MOA 536.4 43.1 0.0 MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 39.1 0.0 R3008AB 34.1 59.7 0.0	GRAND	BAY MOA A	ND R300	980	5		89.2	No	operations	on	this
HAMG SOUTH MOA 704.3 35.0 0.0 LATN 4200.0 35.0 0.0 MOODY 2 NORTH MOA 420.7 44.1 0.0 MOODY 2 NORTH MOA - 100 420.7 No operations on this NOA! MOODY 2 SOUTH MOA 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 39.1 0.0 R3008AB 34.1 59.7 0.0	MOAT										
LATN 4200.0 35.0 0.0 MOODY 2 NORTH MOA 420.7 44.1 0.0 MOODY 2 NORTH MOA - 100 420.7 No operations on this MOA! MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 39.1 0.0 R3008AB 34.1 59.7 0.0	HAWG	NORTH MOA					779.1		35.0		0.0
MOODY 2 NORTH MOA - 100 420.7 No operations on this NOA! MOODY 2 SOUTH MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA - 4000 470.3 39.1 0.0 R3008AB 34.1 59.7 0.0	HAWG	SOUTH MOA					704.3		35.0		0.0
MOODY 2 NORTH MOA - 100 420.7 No operations on this NOA! MOODY 2 SOUTH MOA 536.4 43.1 0.0 MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 39.1 0.0 R3008AB 34.1 59.7 0.0	LATN						4200.0		35.0		0.0
MOODY 2 SOUTH MOA 536.4 43.1 0.0 MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 39.1 0.0 R3008AB 34.1 59.7 0.0	MOODY	2 NORTH M	AOA				420.7		44.1		0.0
MOODY 2 SOUTH MOA 536.4 43.1 0.0 MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 470.3 39.1 0.0 R3008AB 34.1 59.7 0.0	MOODY	2 NORTH M	WA - 10	90			420.7	No	operations	on	this
MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 39.1 0.0 R3008AB 34.1 59.7 0.0	NOA!										
MOA! MUSTANG LOW MOA - 2000	MOODY	2 SOUTH M	AOA				536.4		43.1		0.0
MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 470.3 39.1 0.0 R3008AB 34.1 59.7 0.0	MUSTA	NG LOW MOA	- 1000	9			470.3	No	operations	on	this
MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 470.3 39.1 0.0 R3008AB 34.1 59.7 0.0	MOA!										
MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 470.3 39.1 0.0 R3008AB 34.1 59.7 0.0	MUSTA	NG LOW MOA	- 2000)			470.3	No	operations	on	this
MOAT MUSTANG MOA 470.3 39.1 6.0 R3008AB 34.1 59.7 0.0	MOA!										
MUSTANG MOA 470.3 39.1 0.0 R3008AB 34.1 59.7 0.0	MUSTA	NG LOW MOA	- 4000)			470.3	No	operations	on	this
R3008AB 34.1 59.7 0.0	MOAT										
	MUSTA	NG MOA					470.3		39.1		0.0
R3008C 89.2 47.7 0.0	R3008	AB					34.1		59.7		0.0
	R3008	c					89.2		47.7		0.0

SABRE MOA	1599.8	35.0 0.0
THUD LOW MOA	658.3	No operations on this
MOA!		
THUD MOA	658.3	37.8 0.5
WARHAWK LOW MOA - 1000	682.0	No operations on this
MOAT		
WARHAWK LOW MOA - 2000	682.0	No operations on this
MOA!		
WARHAWK LOW MOA - 4000	682.0	No operations on this
MOA!		
WARHAWK MOA	682.0	37.4 0.4

***** MOA RANGE NOISEMAP ***** RESULTS

SPECIFIC POINT RESULTS

Specific Point: CORSAIR N POI Top 20 contributors to this level:

	Sound Level		
<	Airspa	ice	> Mission
	(dB)		
LATN			LATN - EXISTING - A10_2
A-10A	₹ 35.0		
LATN			LATN - EXISTING - C130_2
C-130J	< 35.0		
CORSAIR NORT	H MOA		CORSAIR N - EXISTING - A10_2
A-10A	< 35.0		
LATN			LATN - EXISTING - H60_2
UH60A	< 35.0		
LATN			LATN - EXISTING - A10_3
A-10A	< 35.0		
CORSAIR NORT	H MOA		CORSAIR N - EXISTING - A10_3
A-10A	₹ 35.0		
LATN			LATN - EXISTING - C130_3
C-130J	< 35.0		
LATN			LATN - EXISTING - H60_3
UH60A	< 35.0		
LATN			LATN - EXISTING - C130
C-130J	< 35.0		
LATN			LATN - EXISTING - A10

A-10A < 35.0	
CORSAIR NORTH MOA	CORSAIR N - EXISTING - A29_3
T-6 < 35,0	
CORSAIR NORTH MOA	CORSAIR N - EXISTING - F18
F-18A/C < 35.0	
LATN	LATN - EXISTING - H60
UH60A < 35.0	
CORSAIR NORTH MOA	CORSAIR N - EXISTING - A29_2
T-6 < 35.0	
CORSAIR NORTH MOA	CORSAIR N - EXISTING - A10
A-10A < 35.0	
CORSAIR NORTH MOA	CORSAIR N - EXISTING - A29
T-6 < 35.0	
R3008AB	R3008AB - EXISTING - A10_2
A-10A < 35.0	
R3008AB	R3008AB - EXISTING - F35
F-35A < 35.0	
R3008AB	R3008AB - EXISTING - A10_3
A-10A < 35.0	
R3008AB	R3008AB - EXISTING - H60_2
UH60A < 35.0	establishment of the control of the

Total Level < 35.0

Specific Point: CORSAIR 5 POI Top 20 contributors to this level:

	Sound Leve	1	
<	Airsp	ace	> Mission
Aircraft	(dB)	HA(%)	
LATN			LATN - EXISTING - A10_2
A-10A	< 35.0		
LATN			LATN - EXISTING - C130_2
C-130J	< 35.0		
LATN			LATN - EXISTING - H60_2
UH60A	< 35.0		
CORSAIR SOUT	H MOA		CORSAIR S - EXISTING - A10_2
A-10A	< 35.0		
LATN			LATN - EXISTING - A10_3
A-10A	₹ 35.0		
CORSAIR SOUT	H MOA		CORSAIR S - EXISTING - A29_3
T-6	< 35.0		
LATN			LATN - EXISTING - C130_3
C-130J	< 35.0		
CORSAIR SOUT	H MOA		CORSAIR 5 - EXISTING - A10_3
A-10A	< 35.0		

LATN	LATN - EXISTING - H60 3
UH60A < 35.0	ACCIDITATION DESCRIPTION OF THE PROPERTY OF TH
LATN	LATM - EXISTING - C130
C-130J < 35.0	
LATN	LATN - EXISTING - A10
A-10A < 35.0	
CORSAIR SOUTH MOA	CORSAIR S - EXISTING - F18
F-18A/C < 35.0	
CORSAIR SOUTH MOA	CORSAIR S - EXISTING - A29_2
T-6 < 35.0	
LATN	LATN - EXISTING - H60
UH60A < 35.0	
CORSAIR SOUTH MOA	CORSAIR 5 - EXISTING - A10
A-10A < 35.0	
CORSAIR SOUTH MOA	CORSAIR 5 - EXISTING - A29
T-6 < 35,0	
R3008AB	R3008AB - EXISTING - A10_2
A-10A < 35.0	
R3008AB	R3008AB - EXISTING - F35
F-35A < 35.0	
R3008AB	R3008AB - EXISTING - A10_3
A-10A < 35.0	
R3008AB	R3008AB - EXISTING - H60_2
UH60A < 35.0	

Total Level < 35.0

Specific Point: MOODY2N POI Top 20 contributors to this level:

	Sound Leve	1	
<	Airsp	ace	> Mission
Aircraft	(dB)	HA(%)	
MOODY 2 NORTH	MOA		MOODY 2N - EXISTING - A10_2
A-10A	40.2	0.4	
MOODY 2 NORTH	I MOA		MOODY 2N - EXISTING - H60_2
UH60A	38.3	0.3	
MOODY 2 NORTH	I MOA		MOODY 2N - EXISTING - A10_3
A-10A	₹ 35.0		
MOODY 2 NORTH	I MOA		MOODY 2N - EXISTING - F18
F-18A/C	< 35.0		
MOODY 2 NORTH	I MOA		MOODY 2N - EXISTING - H60_3
UH60A	< 35.0		
MOODY 2 NORTH	I MOA		MOODY 2N - EXISTING - A29_3
T-6	< 35.0		7616 050 0 0013
MOODY 2 NORTH	L MOA		MOODY 2N - EXISTING - C130_2

C-1303	₹ 35,0	
HAWG NORTH N	10A	HANG N - EXISTING - A10_2
A-10A		
MOODY 2 NORT	TH MOA	MOODY 2N - EXISTING - A10
A-10A	< 35.0	
MOODY 2 NORT	TH MOA	MOODY 2N - EXISTING - C130_3
C-1303	< 35.0	
MOODY 2 NORT	TH MOA	MOODY 2N - EXISTING - A29_2
T-6	< 35.0	
MOODY 2 NORT	TH MOA	MOODY 2N - EXISTING - H60
UH60A	< 35.0	
HAWG NORTH N	10A	HAWG N - EXISTING - A10_3
A-10A	< 35.0	
MOODY 2 NORT	H MOA	MOODY 2N - EXISTING - C130
C-130J	< 35.0	
HAWG NORTH N	10A	HAWG N - EXISTING - F18
F-18A/C	< 35.0	
MOODY 2 NORT	H MOA	MOODY 2N - EXISTING - A29
T-6	< 35.0	
HAWG NORTH N	10A	HAMG N - EXISTING - A10
A-10A	< 35.0	
R3008AB		R3008AB - EXISTING - A10_2
A-10A	< 35.0	
R3008AB		R3008AB - EXISTING - F35
F-35A	< 35.0	
R3008AB		R3008AB - EXISTING - A10 3
	< 35.0	

Specific Point: MOODY2S POI Top 20 contributors to this level:

	Sound Leve	1		
<	Airspa	ace	>	Mission
Aircraft	(dB)	HA(%)		
MOODY 2 SOUTH	MOA			MOODY 2S - EXISTING - A10_2
A-10A	39.1	0.4		
MOODY 2 SOUTH	MOA			MOODY 2S - EXISTING - H60_2
UH60A	37.2	0.3		
MOODY 2 SOUTH	MOA			MOODY 2S - EXISTING - A10_3
A-10A	< 35.0			
MOODY 2 SOUTH	MOA			MOODY 25 - EXISTING - F18
F-18A/C	< 35.0			
MOODY 2 SOUTH	MOA			MOODY 25 - EXISTING - H60_3
UH60A	< 35.0			

MOODY 2 SOUTH MOA	MOODY 2S - EXISTING - A29 3
T-6 < 35,0	The state of the s
MOODY 2 SOUTH MOA	MOODY 2S - EXISTING - C130_2
C-130J < 35.0	=
HAWG SOUTH MOA	HANG S - EXISTING - A10_2
A-10A < 35.0	
MOODY 2 SOUTH MOA	MOODY 25 - EXISTING - A10
A-10A < 35.0	
HAWG SOUTH MOA	HAWG S - EXISTING - A10_3
A-10A < 35.0	
MOODY 2 SOUTH MOA	MOODY 2S - EXISTING - A29_2
T-6 < 35.0	
MOODY 2 SOUTH MOA	MOODY 2S - EXISTING - C130_3
C-1303 < 35.0	
MOODY 2 SOUTH MOA	MOODY 2S - EXISTING - H60
UH60A < 35.0	
MOODY 2 SOUTH MOA	MOODY 25 - EXISTING - C130
C-130J < 35.0	
HAWG SOUTH MOA	HAWG S - EXISTING - F18
F-18A/C < 35.0	
MOODY 2 SOUTH MOA	MOODY 25 - EXISTING - A29
T-6 < 35.0	
HAWG SOUTH MOA	HANG S - EXISTING - A10
A-10A < 35.0	
R3008AB	R3008AB - EXISTING - A10_2
A-10A < 35.0	
R3008AB	R3008AB - EXISTING - F35
F-35A < 35.0	
R3008AB	R3008AB - EXISTING - A10_3
A-10A < 35.0	2007/00/2006 - 12:50 - 2007/2006 - 1007/2006

Specific Point: MUSTANG POI Top 20 contributors to this level:

Total Level 43.3

	Sound Level	I .		
<	Airspa	ice	>	Mission
Aircraft	(dB)	HA(%)		
MUSTANG MOA				MUSTANG - EXISTING - F35
F-35A	38.6	0.3		
LATN				LATN - EXISTING - A10_2
A-10A	< 35.0			
MUSTANG MOA				MUSTANG - EXISTING - A10_2
A-10A	< 35.0			
LATN				LATN - EXISTING - C130_2

0.6

C-1303	₹ 35,0	
LATN		LATN - EXISTING - H60_2
UH60A	₹ 35.0	
LATN		LATN - EXISTING - A10_3
A-10A	< 35.0	
MUSTANG MOA		MUSTANG - EXISTING - A10_3
A-10A	< 35.0	
LATN		LATN - EXISTING - C130_3
C-1303	< 35.0	
MUSTANG MOA		MUSTANG - EXISTING - F18
F-18A/C	₹ 35.0	
LATN		LATN - EXISTING - H60_3
UH60A	₹ 35.0	
LATN		LATN - EXISTING - C130
C-130J	₹ 35.0	
LATN		LATN - EXISTING - A10
A-10A	< 35.0	
LATN		LATN - EXISTING - H60
UH60A	₹ 35.0	
MUSTANG MOA		MUSTANG - EXISTING - A10
A-10A	₹ 35.0	
R3008AB		R3008AB - EXISTING - A10_2
A-10A	< 35.0	_
R3008AB		R3008AB - EXISTING - F35
F-35A	₹ 35.0	
R3008AB		R3008AB - EXISTING - A10 3
A-10A	< 35.0	
R3008AB		R3008AB - EXISTING - H60 2
UH60A	₹ 35.0	
R3008AB		R3008AB - EXISTING - C130 2
C-130J	₹ 35,0	
R3008C		R3008C - EXISTING - A10 2
N3000C	₹ 35,0	(1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

Specific Point: R3008A POI Top 20 contributors to this level:

	Sound Leve:	1		
<	Airspa	ace	>	Mission
Aircraft	(dB)	HA(%)		
R3008AB				R3008AB - EXISTING - A10_2
A-10A	56.2	3.9		
R3008AB				R3008AB - EXISTING - F35
E-35A	49.5	1.5		

R3008AB			R3008AB - EXISTING - A10 3
A-10A	49.2	1.5	
R3008AB			R3008AB - EXISTING - H60 2
UH6@A	47.9	1,2	
R3008AB			R3008AB - EXISTING - C130_2
C-130J	45.7	0.9	
R3008AB			R3008AB - EXISTING - A10
A-10A	42.7	0.6	
R3008AB			R3008AB - EXISTING - H60 3
UH60A	39.6	0.4	
R3008AB			R3008AB - EXISTING - A29 3
T-6	38.5	0.3	
R3008AB			R3008AB - EXISTING - C130 3
C-1303	38.3	0.3	
R3008AB			R3008AB - EXISTING - C130
C-1303	36.1	0.2	
R3008AB			R3008AB - EXISTING - H60
UH60A	< 35.0		
LATN			LATN - EXISTING - A10_2
A-10A	< 35.0		
R3008AB	63(4) 전하고 3합.		R3008AB - EXISTING - A29_2
T-6	< 35.0		
LATN	V. A. C. B.		LATN - EXISTING - C130 2
C-1303	< 35.0		
LATN			LATN - EXISTING - H60_2
UH60A	< 35.0		
LATN			LATN - EXISTING - A10 3
A-10A	< 35.0		
SABRE MOA			SABRE - EXISTING - F35
F-35A	₹ 35.0		SHORE EXISTING 133
LATN			LATN - EXISTING - C130 3
C-130J	< 35.0		2.111
LATN			LATN - EXISTING - H60 3
UH60A	< 35.0		2777777
LATN			LATN - EXISTING - C130
	< 35.0		EATH EXESTING CEST
2 2303	3 2210		
Total Level	58.	7 5.4	
Specific Po:	int: R3008B	POI	
Top 20 contr	ributors to t	his level:	
	Sound Level		
<	Airspa		> Mission
Aircraft	(dB)	HA(%)	
R3008AB	(32)		R3008AB - EXISTING - A10 2
N. J. OOD MILE			HOUSE ENTOTING MIG_Z

A-10A		57.1	4.4	
R3008AB				R3008AB - EXISTING - F35
F-35A		50.5	1.8	
R3008AB				R3008AB - EXISTING - A10 3
A-10A		50.3	1.7	
R3008AB				R3008AB - EXISTING - H60_2
UH60A		49.1	1.5	
R3008AB				R3008AB - EXISTING - C130 2
C-1303		47.3	1.1	
R3008AB				R3008AB - EXISTING - A10
A-10A		43.4	0.7	
R3008AB				R3008AB - EXISTING - H60 3
UH60A		40.8	0.5	2 ** 10 * 10 * 10 * 10 * 10 * 10 * 10 *
R3008AB				R3008AB - EXISTING - A29_3
T-6		40.0	0.4	
R3008AB				R3008AB - EXISTING - C130 3
C-130J		39.9	0.4	= = =
R3008AB				R3008AB - EXISTING - C130
C-1303		37.7	0.3	
R3008AB				R3008AB - EXISTING - H60
UH60A	<	35.0		
R3008AB				R3008AB - EXISTING - A29_2
T-6	<	35.0		
HAWG SOUTH	MOA			HAWG S - EXISTING - A10_2
A-10A	<	35.0		
HAWG NORTH	MOA			HANG N - EXISTING - A10 2
A-10A	<	35.0		
HAWG SOUTH	MOA			HANG S - EXISTING - A10_3
A-10A	<	35.0		C0000000000000000000000000000000000000
HAWG NORTH	MOA			HAWG N - EXISTING - A10_3
A-10A	<	35.0		
R3008AB				R3008AB - EXISTING - A29
T-6	•	35.0		
HAWG SOUTH	MOA			HAWG S - EXISTING - F18
F-18A/C	<	35.0		
HAWG NORTH	MOA			HAWG N - EXISTING - F18
F-18A/C	<	35.0		
HAWG SOUTH	MOA			HAWG S - EXISTING - A10
A-10A		35.0		

6.2

Specific Point: R3008C POI Top 20 contributors to this level:

59.7

Total Level

Sound Level

<	Airspa	ace	> Mission
Aircraft	(dB)	HA(%)	
R3008C			R3008C - EXISTING - A10_2
A-10A	44.6	0.8	
R3008C			R3008C - EXISTING - F35
F-35A	38.5	0.3	
R3008C			R3008C - EXISTING - A10_3
A-10A	38.3	0.3	
R3008C			R3008C - EXISTING - H60_2
UH60A	37.9	0.3	
R3008C			R3008C - EXISTING - C130_2
C-130J	37.1	0.3	
R3008C			R3008C - EXISTING - H60_3
UH60A	< 35.0		PO1676
R3008C			R3008C - EXISTING - A10
A-10A	< 35.0		
R3008C			R3008C - EXISTING - C130_3
C-1303	₹ 35.0		
R3008C			R3008C - EXISTING - A29_3
T-6	< 35.0		
R3008C			R3008C - EXISTING - C130
C-130J	< 35.0		
HAWG SOUTH MO.	A		HANG S - EXISTING - A10_2
A-10A	< 35.0		
R3008C			R3008C - EXISTING - H60
UH60A	< 35.0		
HANG SOUTH MO	A		HANG S - EXISTING - A10_3
A-10A	< 35.0		
R3008C			R3008C - EXISTING - A29_2
T-6	< 35.0		
HANG SOUTH MO	A		HANG S - EXISTING - F18
F-18A/C	< 35.0		
R3008C			R3008C - EXISTING - A29
T-6	< 35.0		
HAMG SOUTH MO.	A		HANG S - EXISTING - A10
A-10A	< 35.0		
R3008AB			R3008AB - EXISTING - A10_2
A-10A	< 35.0		
R3008AB			R3008AB - EXISTING - F35
F-35A	< 35.0		
R3008AB			R3008AB - EXISTING - A10_3
A-10A	< 35.0		

1.2

C-51

Specific Point: SABRE POI Top 20 contributors to this level:

Total Level 47.7

	Sound Leve		22 22 22 22 22 22 22 22 22 22 22 22 22
. Administr	Airsp	CCCCCC	> Mission
Aircraft LATN	(dB)	HA(%)	LATN - EXISTING - A10 2
A-10A	< 35.0		LAIM - EXISTING - AIO_Z
LATN	(55.0		LATN - EXISTING - C130 2
C-1303	< 35.0		LATM - EXISTING - C150_Z
LATN	(35.0		LATN - EXISTING - H60 2
UH60A	< 35.0		EATH - EXISTING - HOD_2
LATN	1 33.0		LATN - EXISTING - A10 3
A-10A	< 35.0		CAIN - CAISITING - ALD_S
SABRE MOA	13.0		SABRE - EXISTING - F35
F-35A	< 35.0		3ADKL - EXT311N6 - F33
LATN	1 13.6		LATN - EXISTING - C130 3
C-1303	< 35.0		CAIN - CAISIING - CISO_3
LATN	. 35.0		LATN - EXISTING - H60 3
733333	< 35.0		EATH - EXISTING - 1100_3
LATN	(35.0		LATN - EXISTING - C130
C-1307	< 35.0		LATIN - EXISTING - CISO
LATN			LATN - EXISTING - A10
A-10A	< 35.0		EXTN - EXISTING - AIG
SABRE MOA	(33.0		SABRE = EXISTING = F18
	< 35.0		SADIL - CAISTING - 115
LATN	. 22.0		LATN - EXISTING - H60
UH60A	< 35.0		EATH - EXISTING - IIIX
R3008AB	. 33.0		R3008AB - EXISTING - A10 2
A-10A	₹ 35.0		K1000AD - EXI31ENG - AED_2
R3008AB	1 22.0		R3008AB - EXISTING - F35
F-35A	< 35.0		MIDDONI - EXISTENC - FIS
R3008AB	. 55.0		R3008AB - EXISTING - A10 3
A-10A	₹ 35.0		NOCCOND EXISTENC ATC_S
R3008AB	, ,,,,,		R3008AB - EXISTING - H60 2
UH60A	< 35.0		NOCOND EXISTENC NOC_2
R3008AB	1 33.0		R3008AB - EXISTING - C130
C-1303	< 35.0		11300010 274311110 2130_1
R3008C	. 55.0		R3008C - EXISTING - A10 2
A-10A	< 35.0		Hadde Evita(Tild NEG-E
R3008AB			R3008AB - EXISTING - A10
A-10A	₹ 35.0		madden Englished Ald
R3008AB			R3008AB - EXISTING - H60 3
UH60A	₹ 35.0		
R3008AB			R3008AB - EXISTING - A29 3
T-6	< 35.0		HEADY PARTY LEND LENT

Appendix C C-52

Total Level < 35.0

Specific Point: THUD POI Top 20 contributors to this level:

	Sound Level	l			
<	Airspace		> Mission		
Aircraft	(dB)	HA(%)			
THUD MOA			THUD - EXISTING - F35		
F-35A	37.4	0.3			
LATN			LATN - EXISTING - A10_2		
A-10A	< 35.0				
THUD MOA			THUD - EXISTING - A10_2		
A-10A	₹ 35.0				
LATN			LATN - EXISTING - C130_2		
C-130J	< 35.0				
LATN			LATN - EXISTING - H60_2		
UH60A	₹ 35.0				
LATN			LATN - EXISTING - A10_3		
A-10A	< 35.0				
THUD MOA			THUD - EXISTING - A10_3		
A-10A	< 35.0				
LATN			LATN - EXISTING - C130_3		
C-130J	< 35.0				
LATN			LATN - EXISTING - H60_3		
UH60A	< 35.0				
LATN			LATN - EXISTING - C130		
C-130J	< 35.0				
LATN			LATN - EXISTING - A10		
A-10A	< 35.0				
THUD MOA			THUD - EXISTING - F18		
F-18A/C	< 35.0				
LATN			LATN - EXISTING - H60		
UH60A	< 35.0				
THUD MOA			THUD - EXISTING - A10		
A-10A	< 35.0				
R3008AB			R3008AB - EXISTING - A10_2		
A-10A	< 35.0				
R3008AB			R3008AB - EXISTING - F35		
F-35A	< 35.0				
R3008AB			R3008AB - EXISTING - A10_3		
A-10A	< 35.0				
R3008AB			R3008AB - EXISTING - H60_2		
UH60A	₹ 35.0				
R3008AB			R3008AB - EXISTING - C130_2		
C-130J	₹ 35.0				
R3008C			R3008C - EXISTING - A10_2		
A-10A	₹ 35.0				

Total Level 39.2 0.4

Specific Point: WARHAWK POI Top 20 contributors to this level:

	Sound	Level				
<	1	irspace		>	Mission	
Aircraft	(dF		HA(%)			
WARHAWK MOA					WARHAWK - EXISTING - F3	5
F-35A	37.	0	0.3			
WARHAWK MOA					WARHAWK - EXISTING - A1	0_2
A-10A	₹ 35.	0				
WARHAWK MOA					WARHAWK - EXISTING - A1	0_3
A-10A	< 35.	0				
WARHAWK MOA					WARHAWK - EXISTING - F1	8
F-18A/C	< 35.	0				
WARHAWK MOA					WARHAWK - EXISTING - A1	.0
A-10A	< 35.	0				
R3008AB					R3008AB - EXISTING - A1	0_2
A-10A	< 35.	0				
R3008AB					R3008AB - EXISTING - F3	5
F-35A	< 35.	0				
R3008AB					R3008AB - EXISTING - A1	0 3
A-10A	< 35.	0				
R3008AB					R3008AB - EXISTING - H6	0 2
UH60A	₹ 35.	0				
R3008AB					R3008AB - EXISTING - C1	30 2
C-130J	₹ 35.	0				8
R3008C					R3008C - EXISTING - A10	2
A-10A	× 35.	0				200
R3008AB					R3008AB - EXISTING - A1	.0
A-10A	< 35.	0				
R3008AB					R3008AB - EXISTING - H6	0 3
UH60A	< 35.	0				-
R3008AB					R3008AB - EXISTING - A2	9 3
T-6	< 35.	0				
MOODY 2 NORTH	MOA				MOODY 2N - EXISTING - A	10 2
	₹ 35.	0				
R3008AB					R3008AB - EXISTING - C1	30 3
C-130J	₹ 35.	0				TO STATE OF
MOODY 2 SOUTH	MOA				MOODY 2S - EXISTING - A	10 2
A-10A	₹ 35.	0				
MUSTANG MOA					MUSTANG - EXISTING - F	35
	< 35.	0				
R3008C					R3008C - EXISTING - F35	
	< 35.	0			enconstant internation of Add	
R3008C					R3008C - EXISTING - A10	3
						-

A-10A < 35.0

Total Level 37.4 0.3

<Run Log>

Date: 7/24/2020 Start Time: 11:38:55 Stop Time: 11:49: 4

Total Running Time: 10 minutes and 9 seconds.

```
***** MOA RANGE NOISEMAP *****
        Version 3.0
Release Date
                 2/7/2013
```

CASE INFORMATION

Case Name: Moody AFB SUA - Alternative 1 - 1000 ft Floor Scenario

Site Name: Moody SUA Complex

SETUP PARAMETERS

```
Number of MOAs and Ranges = 28
                                         Number of tracks = 0
Lower Left Corner of Grid in feet (X Y pair) = -300000., -325000.
Upper Right Corner of Grid in feet (X Y pair) = 300000., 325000.
Grid spacing = 2500. feet Number of events above an SEL of 65.0 dB
Temperature = 59 F
                            Humidity = 70
                                                  Flying days per month = 30
```

MOA SPECIFICATIONS

```
MOA name CORSAIR NORTH LOW MOA - 1000
    Lat
              Long
    (deg)
              (deg)
  31.50029 -84.10001
 31.37945
           -84.03334
  31.30028
            -84.01945
  31.00000
           -83.88306
 31.00000
            -83.46695
 31.33334
            -83,56390
  31.50029 -84.10001
Floor = 1000 feet AGL
                            Ceiling =
                                         8000 feet AGL
MOA name CORSAIR NORTH LOW MOA - 2000
    Lat
              Long
    (deg)
              (deg)
  31.50029
           -84.10001
 31.37945
           -84.03334
 31.30028
           -84.01945
 31.00000
            -83.88306
  31.00000
            -83.46695
  31.33334
            -83.56390
 31.50029
            -84.10001
          2000 feet AGL
Floor =
                           Ceiling =
                                        8000 feet AGL
MOA name CORSAIR NORTH LOW MOA - 4000
    Lat
              Long
    (deg)
              (deg)
  31.50029
            -84,10001
  31.37945
            -84.03334
 31.30028
```

C-56 Appendix C

-84.01945

```
31.00000
            -83,88306
  31.00000 -83.46695
  31.33334 -83.56390
  31.50029
           -84.10001
Floor =
          4000 feet AGL
                            Ceiling =
                                        8000 feet AGL
MOA name CORSAIR NORTH MOA
    Lat
              Long
    (deg)
              (deg)
  31.50029
            -84.10001
 31.37945
            -84.03334
  31.30028
            -84.01945
  31.00000
            -83.88306
 31.00000
            -83,46695
 31.33334
            -83.56390
  31.50029 -84.10001
                            Ceiling - 18000 feet AGL
Floor -
          8000 feet AGL
MOA name CORSAIR SOUTH LOW MOA - 1000
              Long
    (deg)
              (deg)
 31.00000
            83.88306
 31.00000
           -83.46695
 30.61666
            -83.35555
           -83.71666
 30.63362
  31.00000
           -83.88306
                                         8000 feet AGL
Floor =
          1000 feet AGL
                            Ceiling =
MOA name CORSAIR SOUTH LOW MOA - 2000
    Lat
              Long
    (deg)
              (deg)
 31.00000
            -83.88306
 31.00000
            -83,46695
  30.61666
            -83.35555
 30.63362
            -83.71666
            -83,88306
 31.00000
Floor =
                            Ceiling =
                                         8000 feet AGL
          2000 feet AGL
MOA name CORSAIR SOUTH LOW MOA - 4000
              Long
    Lat
    (deg)
              (deg)
  31.00000
            -83.88306
  31.00000
           -83.46695
  30.61666
           -83,35555
  30.63362
            -83.71666
  31.00000
           -83,88306
Floor -
          4000 feet AGL
                            Ceiling - 8000 feet AGL
MOA name CORSAIR SOUTH MOA
    Lat
              Long
```

```
(deg)
               (deg)
  31.00000
             -83.88306
  31.00000
             -83,46695
  30.61666
             -83.35555
  30.63362
             -83.71666
  31.00000
             -83,88306
                             Ceiling = 18000 feet AGL
Floor =
           8000 feet AGL
MOA name GRAND BAY MOA AND R3008C
     Lat
               Long
               (deg)
    (deg)
  31.06694
             -83.01666
  30.85027
             -83.01666
  30.85027
             -83.13333
  30.89194
             -83.14999
  30.90861
             -83,10000
  31.02527
             -83,09999
  31.03361
             -83,14999
  31.06694
             -83.13333
  31.06694
             -83.01666
            100 feet AGL
                             Ceiling -
                                          8000 feet AGL
Floor -
MOA name HANG NORTH MOA
     Lat
               Long
    (deg)
               (deg)
  31.38306
             -83.16111
  30.95028
             -83.14139
  30.95028
             -82.64999
  31.21695
             -82,64999
  31.31140
            -82.74305
  31.38306
            -83.16111
Floor -
           8000 feet AGL
                             Ceiling - 18000 feet AGL
MOA name HAWG SOUTH MOA
     Lat
               Long
    (deg)
               (deg)
  30.95028
             -83.14139
  30.60583
            -83.12556
  30.58361
             -82.64972
  30.95028
             -82.64999
  30.95028
            -83.14139
Floor =
           8000 feet AGL
                             Ceiling = 18000 feet AGL
MOA name LATN
     Lat
               Long
    (deg)
               (deg)
  32.06279
             -83.90001
  31.50029
             -84,10001
  30.63362
             -83,71666
  30.60583
             -83.12556
```

```
31.38306
           -83,16111
  32.06279
           -83,48334
  32.06279 -83.90001
           100 feet AGL
                            Ceiling -
                                         8000 feet AGL
Floor -
MOA name MOODY 2 NORTH MOA
     Lat
              Long
    (deg)
               (deg)
  30.95028
            83.01666
  30.95028
           -82.64999
  31.02667
            -82.64999
  31.23362
            -82.81666
  31.30028
            -82.85000
  31.35028
            -83.01666
  30.95028
           -83.01666
           500 feet AGL
                            Ceiling =
                                         8000 feet AGL
MOA name MOODY 2 NORTH MOA - 100
     Lat
              Long
    (deg)
               (deg)
  30.95028
           -83.01666
  30.95028
            82.64999
  31.02667
            -82.64999
  31.23362
            -82.81666
  31.30028
            -82.85000
  31.35028
            -83.01666
  30.95028
            -83.01666
Floor =
           100 feet AGL
                            Ceiling =
                                         8000 feet AGL
MOA name MOODY 2 SOUTH MOA
     Lat
              Long
    (deg)
               (deg)
  30.95028
            -83,01666
  30.60305
            -83.01666
  30.58361
             -82.64999
  30.95028
            -82,64999
  30.95028
            -83.01666
                            Ceiling =
           100 feet AGL
                                         8000 feet AGL
MOA name MUSTANG LOW MOA - 1000
     Lat
              Long
    (deg)
               (deg)
  32.07196
           -83.59445
  31.56834
            -83.63195
  31.49445
            -83.38334
  31.97196
            -83,39389
  32.06279
            -83,48334
  32.07196
            -83,59445
                                         8000 feet AGL
Floor -
          1000 feet AGL
                            Ceiling -
```

```
MOA name MUSTANG LOW MOA - 2000
               Long
    Lat
    (deg)
               (deg)
 32.07196
             -83.59445
 31.56834
             -83.63195
  31.49445
             -83.38334
 31.97196
             -83.39389
 32.06279
            -83.48334
 32.07196
             -83.59445
           2000 feet AGL
Floor =
                             Ceiling =
                                          8000 feet AGL
MOA name MUSTANG LOW MOA - 4000
     Lat
               Long
    (deg)
               (deg)
  32.07196
             -83.59445
 31.56834
            -83,63195
 31.49445
            -83.38334
 31.97196
            -83,39389
 32.06279
            -83,48334
 32.07196
             -83.59445
          4000 feet AGL
                             Ceiling - 8000 feet AGL
Floor -
MOA name MUSTANG MOA
    Lat
    (deg)
               (deg)
  32.07196
            -83.59445
 31.56834
            -83.63195
 31.49445
            -83.38334
            -83,39389
 31.97196
  32.06279
            -83.48334
  32.07196
            -83,59445
Floor -
          8000 feet AGL
                             Ceiling - 18000 feet AGL
MOA name R3008AB
     Lat
               Long
    (deg)
               (deg)
  30.89194
            -83.14999
  30.90861
            -83.10000
 31.02527
             -83.09999
 31.03361
             -83.14999
  30.98694
            -83.16669
 30.95997
             -83.18475
  30.94738
            -83.16674
 30.89194
            -83,14999
Floor =
           100 feet AGL
                             Ceiling =
                                          8000 feet AGL
MOA name R3008C
    Lat
               Long
    (deg)
               (deg)
 31.06694
             -83.01666
```

```
30.85027
            -83,01666
  30.85027
            -83,13333
  30.89194
            -83,14999
  30.90861
            -83,10000
  31.02527
             -83.09999
  31.03361
             -83.14999
 31.06694
             -83.13333
 31.06694
            -83.01666
Floor =
            500 feet AGL
                            Ceiling =
                                          8000 feet AGL
MOA name SABRE MOA
    Lat
              Long
    (deg)
               (deg)
  31.68751
             -84.03334
 31.50029
            -84.10001
 31.33334
            -83,56390
 30.61666
            -83.35555
  30,60583
            -83,12556
 31.38306
            -83.16111
 31.49445
             83.38334
 31.68751
            -84.03334
           8000 feet AGL
                            Ceiling = 18000 feet AGL
Floor =
MOA name THUD LOW MOA
    Lat
              Long
    (deg)
              (deg)
  32.07196
            -83.59445
 32.08363
            -83.73751
 32.06279
            -83.90001
 31.68751
            -84.03334
 31.56834
            -83.63195
  32.07196
            -83.59445
Floor =
           4000 feet AGL
                            Ceiling =
                                         8000 feet AGL
MOA name THUD MOA
    Lat
              Long
    (deg)
               (deg)
  32.07196
            -83.59445
 32.08363
            -83.73751
 32.06279
            -83.90001
  31.68751
            -84.03334
 31.56834
            -83.63195
            -83.59445
  32.07196
Floor =
           8000 feet AGL
                            Ceiling = 18000 feet AGL
MOA name WARHAWK LOW MOA - 1000
    Lat
              Long
    (deg)
               (deg)
  31.97196
             -83.39389
 31.49445
            -83.38334
```

```
31.38306 -83.16111
  31.31140
          -82,74305
  31.97196 -83.39389
Floor - 1000 feet AGL
                           Ceiling -
                                        8000 feet AGL
MOA name WARHAWK LOW MOA - 2000
    Lat
              Long
    (deg)
              (deg)
  31.97196
            -83.39389
 31.49445
           -83.38334
 31.38306
           -83.16111
  31.31140
            -82.74305
  31.97196
           -83.39389
Floor = 2000 feet AGL
                            Ceiling =
                                        8000 feet AGL
MOA name WARHAWK LOW MOA - 4000
    Lat
              Long
    (deg)
              (deg)
 31.97196
           -83,39389
  31.49445
            -83.38334
 31.38306
           -83.16111
 31.31140
            82.74305
  31.97196
           -83.39389
Floor =
          4000 feet AGL
                           Ceiling =
                                      8000 feet AGL
MOA name WARHAWK MOA
    Lat
    (deg)
              (deg)
  31.97196
           -83,39389
  31.49445
           -83.38334
 31.38306
           -83,16111
 31.31140
           -82.74305
  31.97196 -83.39389
Floor - 8000 feet AGL
                           Ceiling - 18000 feet AGL
                 SPECIFIC POINT SPECIFICATION
```

```
Number of Specific points = 11
Latitude
            Longitude
                           Name
 31.21328
            -83.74600
                          CORSAIR N POI
 30.81517
            -83.60754
                          CORSAIR 5 POI
 31.10161
            -82.86792
                          MOODY2N POI
 30.76693
           -82.84566
                          MOODY25 POI
           -83,49074
 31.74683
                          MUSTANG POI
 30.95783
           -83.16461
                          R3008A POI
 30.95604
           -83.12070
                          R3008B POI
 30.94930
            -83.05738
                          R3008C POI
 31.32796
            -83,38621
                          SABRE POI
 31.85989
            -83.76024
                          THUD POI
 31.58464
            -83.20150
                          WARHAWK POI
```

```
MISSION DATA
Mission name - CORSAIR N - ALTERNATIVE 1- A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                       86.0
          Altitude Distribution
                Upper Alt
    Lower Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
     8000
                 23000
                             100.0
Mission name = CORSAIR N - ALTERNATIVE 1- A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                       93.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
     8000
                 23000
                             100.0
Mission name = CORSAIR N - ALTERNATIVE 1- A10_3
Aircraft code -FM0090102 Speed - 350 kias Power -
                                                       97.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
     8000
                 23000
                             100.0
Mission name = CORSAIR N - ALTERNATIVE 1- A29
Aircraft code =FM0870100 Speed = 120 kias Power =
                                                       30.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL) Utilization
     8000
                 23000
                             100.0
Mission name - CORSAIR N - ALTERNATIVE 1- A29_2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                       55.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
                (feet AGL)
   (feet AGL)
                            Utilization
     8000
                 23000
                             100.0
Mission name = CORSAIR N - ALTERNATIVE 1- A29_3
Aircraft code =FM0870102 Speed = 220 kias Power = 100.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
     8000
                 23000
                             100.0
```

```
Mission name - CORSAIR N - ALTERNATIVE 1- F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                         80.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name = CORSAIR N LOW - ALTERNATIVE 1- A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                         86.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = CORSAIR N LOW - ALTERNATIVE 1- A10_2
Aircraft code -FM0090101 Speed - 250 kias Power -
                                                        93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = CORSATR N LOW - ALTERNATIVE 1- A10 3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                        97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = CORSAIR N LOW - ALTERNATIVE 1 - C130
Aircraft code =FM0290400 Speed = 150 kias Power =
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               18.2
      3000
                   5000
                               27.3
      5000
                   8000
                               54.5
```

Mission name = CORSAIR N LOW - ALTERNATIVE 1 - C130_2

```
Aircraft code =FM0290401 Speed = 220 kias Power = 1800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               18.2
      3000
                   5000
                               27.3
      5000
                   8000
                               54.5
Mission name = CORSAIR N LOW - ALTERNATIVE 1 - C130_3
Aircraft code =FM0290402 Speed = 350 kias Power = 4700.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               18.2
      3000
                   5000
                               27.3
      5000
                   8000
                               54.5
Mission name = CORSAIR N LOW - ALTERNATIVE 1 - H60
Aircraft code -FM6210100 Speed -
                                    70 kias Power -
                                                         0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               95.0
      3000
                   5000
                                5.0
Mission name = CORSAIR N LOW - ALTERNATIVE 1 - H60_2
Aircraft code =FM6210101 Speed = 110 kias Power =
                                                         0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               95.0
      3000
                   5000
                                5.0
Mission name = CORSAIR N LOW - ALTERNATIVE 1 - H60_3
Aircraft code =FM6210102 Speed = 130 kias Power =
                                                         0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               95.0
      3000
                   5000
                                5.0
Mission name - CORSAIR N LOW - ALTERNATIVE 1- A29
Aircraft code =FM0870100 Speed = 120 kias Power =
                                                         30.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
```

```
Utilization
   (feet AGL)
                (feet AGL)
      1000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = CORSAIR N LOW - ALTERNATIVE 1- A29_2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                         55.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name - CORSAIR N LOW - ALTERNATIVE 1- A29_3
Aircraft code =FM0870100 Speed = 120 kias Power =
                                                         30.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = CORSAIR N LOW - ALTERNATIVE 1- F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                         80.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               10.0
      3000
                   5000
                               10.0
      5000
                   8000
                               80.0
Mission name = CORSAIR S - ALTERNATIVE 1- A10
Aircraft code =FM0090100 Speed = 180 kias Power =
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name = CORSAIR S - ALTERNATIVE 1- A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                         93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
```

```
Mission name = CORSAIR S - ALTERNATIVE 1- A10_3
Aircraft code -FM0090102 Speed - 350 kias Power -
                                                          97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                (feet AGL)
                              Utilization
      8000
                  23000
                               100.0
Mission name = CORSAIR S - ALTERNATIVE 1- A29
Aircraft code =FM0870100 Speed = 120 kias Power =
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                (feet AGL)
                              Utilization
      8000
                  23000
                               100.0
Mission name - CORSAIR 5 - ALTERNATIVE 1- A29_2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                          55.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                (feet AGL)
                              Utilization
      8000
                   23000
                               100.0
Mission name = CORSAIR S - ALTERNATIVE 1- A29_3
Aircraft code =FM0870102 Speed = 220 kias Power = 100.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
      8000
                   23000
                               100.0
Mission name = CORSAIR S - ALTERNATIVE 1- F18
Aircraft code -FM0450100 Speed - 350 kias Power -
                                                          80.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
                   23000
                               100.0
Mission name = CORSAIR S LOW - ALTERNATIVE 1- A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                          86.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
      1000
                    3000
                                10.0
      3000
                    5000
                                30.0
      5000
                   8000
                                60.0
```

```
Mission name = CORSAIR S LOW - ALTERNATIVE 1- A10_2
Aircraft code -FM0090101 Speed - 250 kias Power -
                                                        93.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = CORSAIR S LOW - ALTERNATIVE 1- A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                        97.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
                             Utilization
   (feet AGL)
                (feet AGL)
      1000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = CORSAIR S LOW - ALTERNATIVE 1 - C130
Aircraft code =FM0290400 Speed = 150 kias Power = 800.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               18.2
      3000
                   5000
                               27.3
      5000
                   8000
                               54.5
Mission name = CORSAIR S LOW - ALTERNATIVE 1 - C130_2
Aircraft code -FM0290401 Speed - 220 kias Power - 1800.0
           Altitude Distribution
                Upper Alt
    Lower Alt
                              Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               18.2
      3000
                   5000
                               27.3
      5000
                   8000
                               54.5
Mission name = CORSAIR S LOW - ALTERNATIVE 1 - C130 3
Aircraft code =FM0290402 Speed = 250 kias Power = 4700.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               18.2
      3000
                   5000
                               27.3
      5000
                   8000
                               54.5
```

```
Mission name = CORSAIR S LOW - ALTERNATIVE 1 - H60
Aircraft code -FM6210100 Speed -
                                    70 kias Power -
                                                          0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               95.0
      3000
                   5000
                                5.0
Mission name = CORSAIR S LOW - ALTERNATIVE 1 - H60 2
Aircraft code =FM6210101 Speed = 100 kias Power =
                                                          0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               95.0
      3000
                   5000
                                5.0
Mission name - CORSAIR S LOW - ALTERNATIVE 1 - H60_3
Aircraft code =FM6210102 Speed = 130 kias Power =
                                                          0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               95.0
      3000
                   5000
                                5.0
Mission name = CORSATR S LOW - ALTERNATIVE 1- A29
Aircraft code =FM0870100 Speed = 120 kias Power =
                                                         30.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = CORSAIR S LOW - ALTERNATIVE 1- A29 2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                         55.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
```

Mission name = CORSAIR S LOW - ALTERNATIVE 1- A29_3

```
Aircraft code =FM0870102 Speed = 220 kias Power = 100.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = CORSAIR S LOW - ALTERNATIVE 1- F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                        80.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               10.0
      3000
                   5000
                               10.0
      5000
                   8000
                               80.0
Mission name = HAWG N - ALTERNATIVE 1 - A10
Aircraft code -FM0090100 Speed - 180 kias Power -
                                                        86.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
                (feet AGL)
   (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name = HAWG N - ALTERNATIVE 1 - A10 2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                        93.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name - HAWG N - ALTERNATIVE 1 - A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                        97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
                (feet AGL)
   (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name = HAWG N - ALTERNATIVE 1 - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                        80.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
```

```
Mission name - HAWG S - ALTERNATIVE 1 - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                        86.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name = HAWG S - ALTERNATIVE 1 - A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                        93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
                (feet AGL)
   (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name = HAWG S - ALTERNATIVE 1 - A10_3
Aircraft code -FM0090102 Speed - 350 kias Power -
                                                        97.0
           Altitude Distribution
   Lower Alt
                Upper Alt
                               Percent
                (feet AGL)
   (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name = HAWG S - ALTERNATIVE 1 - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                        80.0
           Altitude Distribution
                Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name - LATN - EXISTING - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                        86.0
           Altitude Distribution
                Upper Alt
    Lower Alt
                              Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = LATN - EXISTING - A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                        93.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                5.0
```

```
1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name - LATN - EXISTING - A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                        97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name - LATN - EXISTING - C130
Aircraft code =FM0290400 Speed = 150 kias Power =
                                                       800.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = LATN - EXISTING - C130_2
Aircraft code =FM0290401 Speed = 220 kias Power = 1800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = LATN - EXISTING - C130_3
Aircraft code =FM0290402 Speed = 250 kias Power = 4700.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
                               15.0
      1000
                   3000
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
```

Mission name = LATN - EXISTING - H60

```
70 kias Power =
Aircraft code =FM6210100 Speed =
                                                          0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                25.0
      1000
                   3000
                                70.0
      3000
                   5000
                                 5.0
Mission name = LATN - EXISTING - H60 2
Aircraft code =FM6210102 Speed = 130 kias Power =
                                                          0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                               25.0
      1000
                   3000
                                70.0
      3000
                   5000
                                 5.0
Mission name = LATN - EXISTING - H60_3
Aircraft code -FM6210102 Speed - 130 kias Power -
                                                          0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                               25.0
      1000
                   3000
                                70.0
      3000
                   5000
                                 5.0
Mission name = MOODY 2N - ALTERNATIVE 1 - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                         86.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                              Utilization
       100
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                                60.0
Mission name = MOODY 2N - ALTERNATIVE 1 - A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                         93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                              Utilization
       100
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                                60.0
```

```
Mission name - MOODY 2N - ALTERNATIVE 1 - A10 3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                        97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = MOODY 2N - ALTERNATIVE 1 - A29
Aircraft code =FM0870100 Speed = 120 kias Power =
                                                         30.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
                             Utilization
   (feet AGL)
                (feet AGL)
       100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = MOODY 2N - ALTERNATIVE 1 - A29_2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                        55.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                5.0
      1000
                   3000
                                5.0
                   5000
      3000
                               30.0
      5000
                   8000
                               60.0
Mission name = MOODY 2N - ALTERNATIVE 1 - A29_3
Aircraft code -FM0870102 Speed - 220 kias Power - 100.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
                   1000
       100
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = MOODY 2N - ALTERNATIVE 1 - C130
Aircraft code -FM0290400 Speed - 150 kias Power - 800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
```

```
100
                   1000
                                5.0
      1000
                   3000
                               15.0
                   5000
      3000
                               30.0
      5000
                   8000
                               50.0
Mission name = MOODY 2N - ALTERNATIVE 1 - C130_2
Aircraft code =FM0290401 Speed = 220 kias Power = 1800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = MOODY 2N - ALTERNATIVE 1 - C130_3
Aircraft code -FM0290402 Speed - 250 kias Power - 4700.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
                (feet AGL)
   (feet AGL)
                             Utilization
       100
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = MOODY 2N - ALTERNATIVE 1 - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               10.0
      5000
                   8000
                               80.0
Mission name = MOODY 2N - ALTERNATIVE 1 - H60
Aircraft code =FM6210100 Speed =
                                   70 kias Power =
                                                          0.0
           Altitude Distribution
    Lower Alt
                               Percent
                 Upper Alt
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                               25.0
      1000
                   3000
                               70.0
      3000
                   5000
                                5.0
```

Mission name = MOODY 2N - ALTERNATIVE 1 - H60_2

```
Aircraft code =FM6210101 Speed = 100 kias Power =
                                                          0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                              Utilization
       100
                   1000
                                25.0
      1000
                   3000
                                70.0
      3000
                   5000
                                 5.0
Mission name = MOODY 2N - ALTERNATIVE 1 - H60_3
Aircraft code =FM6210102 Speed = 130 kias Power =
                                                          0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                              Utilization
       100
                   1000
                               25.0
      1000
                   3000
                                70.0
      3000
                   5000
                                 5.0
Mission name = MOODY 2S - ALTERNATIVE 1 - A10
Aircraft code -FM0090100 Speed - 180 kias Power -
                                                         86.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                              Utilization
       500
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                               60.0
Mission name = MOODY 2S - ALTERNATIVE 1 - A10_2
Aircraft code -FM0090101 Speed - 250 kias Power -
                                                         93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                              Utilization
       500
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                               60.0
Mission name = MOODY 2S - ALTERNATIVE 1 - A10 3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                         97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                (feet AGL)
                              Utilization
       500
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                                60.0
```

```
Mission name = MOODY 2S - ALTERNATIVE 1 - A29
Aircraft code -FM0870100 Speed - 120 kias Power -
                                                           30.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
       500
                    1000
                                  5.0
      1000
                    3000
                                  5.0
      3000
                    5000
                                 30.0
      5000
                    8000
                                 60.0
Mission name = MOODY 2S - ALTERNATIVE 1 - A29_2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                           55.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
       500
                    1000
                                  5.0
      1000
                    3000
                                  5.0
      3000
                    5000
                                 30.0
      5000
                    8000
                                60.0
Mission name = MOODY 2S - ALTERNATIVE 1 - A29_3
Aircraft code =FM0870102 Speed = 220 kias Power = 100.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
       500
                    1000
                                  5.0
      1000
                    3000
                                  5.0
      3000
                    5000
                                 30.0
      5000
                    8000
                                60.0
Mission name - MOODY 2S - ALTERNATIVE 1 - C130
Aircraft code =FM0290400 Speed = 150 kias Power = 800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
       500
                    1000
                                  5.0
      1000
                    3000
                                 15.0
      3000
                    5000
                                 30.0
      5000
                    8000
                                 50.0
Mission name - MOODY 2S - ALTERNATIVE 1 - C130_2
Aircraft code =FM0290401 Speed = 220 kias Power = 1800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
```

```
Utilization
   (feet AGL)
                  (feet AGL)
        500
                      1000
                                    5.0
       1000
                                   15.0
                      3000
       3000
                      5000
                                   30.0
       5000
                     8000
                                   50.0
Mission name = MOODY 2S - ALTERNATIVE 1 - C130_3
Aircraft code =FM0290402 Speed = 250 kias Power = 4700.0
            Altitude Distribution
    Lower Alt
                   Upper Alt
                                   Percent
   (feet AGL)
                  (feet AGL)
                                 Utilization
        500
                     1000
                                    5.0
       1000
                      3000
                                   15.0
       3000
                      5000
                                   30.0
       5000
                     8000
                                   50.0
Mission name - MOODY 2S - ALTERNATIVE 1 - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                               80.0
            Altitude Distribution
    Lower Alt
                   Upper Alt
                                   Percent
   (feet AGL)
                  (feet AGL)
                                 Utilization
        500
                     1000
                                    5.0
       1000
                     3000
                                    5.0
       3000
                      5000
                                   10.0
       5000
                     8000
                                   80.0
Mission name = MOODY 2S - ALTERNATIVE 1 - H60
Aircraft code =FM6210100 Speed =
                                        70 kias Power =
                                                                0.0
            Altitude Distribution
    Lower Alt
                   Upper Alt
                                   Percent
   (feet AGL)
                  (feet AGL)
                                 Utilization
        500
                     1000
                                   25.0
       1000
                     3000
                                   70.0
       3000
                      5000
                                    5.0
Mission name = MOODY 2S - ALTERNATIVE 1 - H60_2
Aircraft code =FM6210101 Speed = 100 kias Power =
                                                                0.0
            Altitude Distribution
    Lower Alt
                                   Percent
                   Upper Alt
   (feet AGL)
                  (feet AGL)
                                 Utilization
        500
                      1000
                                   25.0
       1000
                      3000
                                   70.0
       3000
                      5000
                                    5.0
```

Mission name = MOODY 2S - ALTERNATIVE 1 - H60_3

```
Aircraft code =FM6210102 Speed = 130 kias Power =
                                                           0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                (feet AGL)
                              Utilization
       500
                    1000
                                25.0
      1000
                    3000
                                70.0
      3000
                    5000
                                 5.0
Mission name = MUSTANG - ALTERNATIVE 1 - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                          86.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
      8000
                  23000
                               100.0
Mission name = MUSTANG - ALTERNATIVE 1 - A10_2
Aircraft code -FM0090101 Speed - 250 kias Power -
                                                          93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                (feet AGL)
                              Utilization
      8000
                  23000
                               100.0
Mission name = MUSTANG - ALTERNATIVE 1 - A10 3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                          97.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                                Percent
   (feet AGL)
                (feet AGL)
                              Utilization
      8000
                  23000
                               100.0
Mission name - MUSTANG - ALTERNATIVE 1 - F35
Aircraft code =FM0890200 Speed = 350 kias Power =
                                                          75.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
      8000
                   23000
                              100.0
Mission name = MUSTANG - ALTERNATIVE 1 - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                          80.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
      8000
                  23000
                               100.0
```

Mission name = MUSTANG LOW MOA - ALTERNATIVE 1 - C130

800.0

```
Aircraft code =FM0290400 Speed = 150 kias Power =
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
      1000
                    3000
                                 18.2
      3000
                    5000
                                 27.3
      5000
                    8000
                                 54.5
Mission name = MUSTANG LOW MOA - ALTERNATIVE 1 - C130_2
Aircraft code =FM0290401 Speed = 220 kias Power = 1800.0
           Altitude Distribution
    Lower Alt
                  Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
      1000
                    3000
                                18.2
      3000
                    5000
                                27.3
      5000
                    8000
                                 54.5
Mission name = MUSTANG LOW MOA - ALTERNATIVE 1 - C130_3
Aircraft code -FM0290402 Speed - 250 kias Power - 4700.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
      1000
                    3000
                                18.2
      3000
                    5000
                                 27.3
      5000
                    8000
                                 54.5
Mission name = MUSTANG LOW MOA - ALTERNATIVE 1 - H60
Aircraft code =FM6210100 Speed =
                                     70 kias Power =
                                                            0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
      1000
                    3000
                                95.0
      3000
                    5000
                                  5.0
Mission name = MUSTANG LOW MOA - ALTERNATIVE 1 - H60_2
Aircraft code =FM6210101 Speed = 100 kias Power =
                                                            0.0
           Altitude Distribution
    Lower Alt
                  Upper Alt
                                Percent
                 (feet AGL)
   (feet AGL)
                              Utilization
      1000
                    3000
                                95.0
      3000
                    5000
                                  5.0
Mission name = MUSTANG LOW MOA - ALTERNATIVE 1 - H60_3
Aircraft code -FM6210102 Speed - 130 kias Power -
                                                            0.0
           Altitude Distribution
```

```
Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               95.0
      3000
                   5000
                                5.0
Mission name = MUSTANG LOW MOA - ALTERNATIVE 1- A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                         86.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               10.0
      3000
                   5000
                               30.0
                   8000
      5000
                               60.0
Mission name - MUSTANG LOW MOA - ALTERNATIVE 1- A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                         93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = MUSTANG LOW MOA - ALTERNATIVE 1- A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                         97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = MUSTANG LOW MOA - ALTERNATIVE 1- A29
Aircraft code =FM0870100 Speed = 120 kias Power =
                                                         30.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name - MUSTANG LOW MOA - ALTERNATIVE 1- A29_2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                         55.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
```

```
(feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = MUSTANG LOW MOA - ALTERNATIVE 1- A29_3
Aircraft code =FM0870102 Speed = 220 kias Power = 100.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name - MUSTANG LOW MOA - ALTERNATIVE 1- F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                         80.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               10.0
      3000
                   5000
                               10.0
      5000
                   8000
                               80.0
Mission name = R3008AB - EXISTING - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                         86.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                 5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = R3008AB - EXISTING - A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                         93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                               60.0
Mission name - R3008AB - EXISTING - A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                         97.0
```

Altitude Distribution

```
Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = R3008AB - EXISTING - A29
Aircraft code =FM0870100 Speed = 120 kias Power =
                                                         30.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                5.0
      1000
                   3000
                                 5.0
                   5000
      3000
                               30.0
      5000
                   8000
                               60.0
Mission name - R3008AB - EXISTING - A29_2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                         55.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name - R3008AB - EXISTING - A29_3
Aircraft code =FM0870102 Speed = 220 kias Power = 100.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = R3008AB - EXISTING - C130
Aircraft code =FM0290400 Speed = 150 kias Power = 800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
```

30.0

```
5000
                   8000
                               50.0
Mission name - R3008AB - EXISTING - C130_2
Aircraft code =FM0290401 Speed = 220 kias Power = 1800.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = R3008AB - EXISTING - C130 3
Aircraft code =FM0290402 Speed = 250 kias Power = 4700.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = R3008AB - EXISTING - F35
Aircraft code =FM0890200 Speed = 350 kias Power =
                                                        75.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               10.0
      5000
                   8000
                               80.0
Mission name = R3008AB - EXISTING - H60
Aircraft code =FM6210100 Speed =
                                    70 kias Power =
                                                         0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                               25.0
      1000
                   3000
                               70.0
      3000
                   5000
                                5.0
Mission name - R3008AB - EXISTING - H60_2
Aircraft code =FM6210101 Speed = 100 kias Power =
                                                         0.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
```

```
(feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                25.0
      1000
                   3000
                                70.0
      3000
                   5000
                                 5.0
Mission name = R3008AB - EXISTING - H60_3
Aircraft code =FM6210101 Speed = 130 kias Power =
                                                          0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                25.0
      1000
                   3000
                                70.0
      3000
                   5000
                                 5.0
Mission name - R3008C - ALTERNATIVE 1 - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                         86.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                              Utilization
                (feet AGL)
       100
                   1000
                                5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = R3008C - ALTERNATIVE 1 - A10 2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                         93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                             Utilization
                (feet AGL)
                   1000
       100
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                                60.0
Mission name = R3008C - ALTERNATIVE 1 - A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                         97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                              Utilization
       100
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                                60.0
```

Mission name = R3008C - ALTERNATIVE 1 - A29

```
Aircraft code =FM0870100 Speed = 120 kias Power =
                                                        30.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = R3008C - ALTERNATIVE 1 - A29_2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                        55.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = R3008C - ALTERNATIVE 1 - A29_3
Aircraft code =FM0870102 Speed = 220 kias Power = 100.0
           Altitude Distribution
   Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = R3008C - ALTERNATIVE 1 - C130
Aircraft code -FM0290400 Speed - 150 kias Power - 800.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = R3008C - ALTERNATIVE 1 - C130 2
Aircraft code =FM0290401 Speed = 220 kias Power = 1800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                                5.0
      1000
                   3000
                               15.0
```

```
3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = R3008C - ALTERNATIVE 1 - C130_3
Aircraft code -FM0290402 Speed - 250 kias Power - 4700.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = R3008C - ALTERNATIVE 1 - F35
Aircraft code -FM0890200 Speed - 350 kias Power -
                                                        75.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               10.0
      5000
                   8000
                               80.0
Mission name = R3008C - ALTERNATIVE 1 - H60
Aircraft code =FM6210100 Speed = 70 kias Power =
                                                         0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                               25.0
      1000
                   3000
                               70.0
      3000
                   5000
                                5.0
Mission name = R3008C - ALTERNATIVE 1 - H60_2
Aircraft code =FM6210101 Speed = 100 kias Power =
                                                         0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                               25.0
      1000
                   3000
                               70.0
      3000
                   5000
                                5.0
Mission name - R3008C - ALTERNATIVE 1 - H60_3
Aircraft code =FM6210102 Speed = 130 kias Power =
                                                         0.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
```

```
Utilization
   (feet AGL)
                (feet AGL)
       100
                   1000
                               25.0
                               70.0
      1000
                   3000
      3000
                   5000
                                5.0
Mission name = SABRE - EXISTING - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                        80.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name = SABRE - EXISTING - F35
Aircraft code =FM0890200 Speed = 350 kias Power =
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                            Utilization
      8000
                  23000
                              100.0
Mission name = THUD - ALTERNATIVE 1 - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                        86.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
                  23000
      4000
                              100.0
Mission name = THUD - ALTERNATIVE 1 - A10_2
Aircraft code -FM0090101 Speed - 250 kias Power -
                                                        93.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      4000
                  23000
                              100.0
Mission name = THUD - ALTERNATIVE 1 - A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                        97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      4000
                  23000
                              100.0
Mission name - THUD - ALTERNATIVE 1 - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                        80.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
```

```
(feet AGL)
   (feet AGL)
                             Utilization
      4000
                  23000
                              100.0
Mission name = THUD - ALTERNATIVE 1 - F35
Aircraft code -FM0890200 Speed - 350 kias Power -
                                                        75.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      4000
                  23000
                              100.0
Mission name = WARHANK - ALTERNATIVE 1 - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                        86.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
                             Utilization
   (feet AGL)
                (feet AGL)
      8000
                  23000
                              100.0
Mission name - WARHAWK - ALTERNATIVE 1 - A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                        93.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
      8000
                  23000
                             100.0
Mission name = WARHAWK - ALTERNATIVE 1 - A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name = WARHANK - ALTERNATIVE 1 - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                             100.0
Mission name = WARHANK - ALTERNATIVE 1 - F35
Aircraft code =FM0890200 Speed = 350 kias Power =
                                                        75.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                             100.0
```

```
Mission name = WARHAWK LOW MOA - ALTERNATIVE 1 - C130
Aircraft code -FM0290400 Speed - 150 kias Power - 800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               18.2
      3000
                   5000
                               27.3
      5000
                   8000
                               54.5
Mission name = WARHANK LOW MOA - ALTERNATIVE 1 - C130_2
Aircraft code =FM0290401 Speed = 220 kias Power = 1800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               18.2
      3000
                   5000
                               27.3
      5000
                   8000
                               54.5
Mission name = WARHAWK LOW MOA - ALTERNATIVE 1 - C130 3
Aircraft code =FM0290402 Speed = 250 kias Power = 4700.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               18.2
      3000
                   5000
                               27.3
      5000
                   8000
                               54.5
Mission name = WARHAWK LOW MOA - ALTERNATIVE 1 - H60
Aircraft code -FM6210100 Speed -
                                   70 kias Power -
                                                         0.0
           Altitude Distribution
   Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               95.0
      3000
                   5000
                                5.0
Mission name = WARHANK LOW MOA - ALTERNATIVE 1 - H60 2
Aircraft code =FM6210101 Speed = 110 kias Power =
                                                         0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               95.0
      3000
                   5000
```

```
Mission name = WARHANK LOW MOA - ALTERNATIVE 1 - H60 3
Aircraft code -FM6210102 Speed - 120 kias Power -
                                                          0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               95.0
      3000
                   5000
                                 5.0
Mission name = WARHAWK LOW MOA - ALTERNATIVE 1- A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                         86.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = WARHAWK LOW MOA - ALTERNATIVE 1- A10_2
Aircraft code -FM0090101 Speed - 250 kias Power -
                                                         93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = WARHANK LOW MOA - ALTERNATIVE 1- A10 3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                         97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = WARHAWK LOW MOA - ALTERNATIVE 1- A29
Aircraft code =FM0870100 Speed = 120 kias Power =
                                                         30.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      1000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
```

Mission name = WARHAWK LOW MOA - ALTERNATIVE 1- A29_2

(feet AGL) (feet AGL) Utilization 1000 3000 10.0 3000 5000 30.0		Percent	Upper Alt	Lower Alt
		Utilization	(feet AGL)	(feet AGL)
3000 5000 30.0		10.0	3000	1000
		30.0	5000	3000
5000 8000 60.0		60.0	8000	5000

Mission name = WARHANK LOW MOA - ALTERNATIVE 1- A29_3 Aircraft code =FM0870102 Speed = 220 kias Power = 100.0 Altitude Distribution

Lower Alt	Upper Alt	Percent
(feet AGL)	(feet AGL)	Utilization
1000	3000	10.0
3000	5000	30.0
5000	8000	60.0

Mission name = WARHAWK LOW MOA - ALTERNATIVE 1- F18
Aircraft code -FM0450100 Speed - 350 kias Power - 80.0
Altitude Distribution

Lower Alt	Upper Alt	Percent
(feet AGL)	(feet AGL)	Utilization
1000	3000	10.0
3000	5000	10.0
5000	8000	80.0

MOA OPERATION DATA MOA name = CORSAIR NORTH LOW MOA - 1000

			Daily	
Monthly	Yearly			
Mission		Day	Night	Day
Night Day	Night Time 0	On Range		
Name		OPS	OPS	OPS
OPS OPS	OPS (mir	nutes)		
CORSAIR N	LOW - ALTERNATIVE 1-	- A10 2.089	0.233	62.67
7.00 752	. 84. 4	1.		
CORSAIR N	LOW - ALTERNATIVE 1-	- A10_2 2.089	0.233	62.67
7.00 752	. 84. 14	1.		
CORSAIR N	LOW - ALTERNATIVE 1-	- A10_3 2.089	0.233	62.67
7.00 752	. 84. 2	2.		
CORSAIR N	LOW - ALTERNATIVE 1 -	- C130 0.031	0.028	0.92
0.83 11	. 10. 3	3.		
CORSAIR N	LOW - ALTERNATIVE 1 -	- C130_2 0.031	0.028	0.92
0.83 11	. 10. 24	١.		
CORSAIR N	LOW - ALTERNATIVE 1	C130_3 0.031	0.028	0.92

0,83				
1.08	CORSAIR N LOW - ALTERNATIVE 1 - H60 47. 13. 8.	0.131	0.036	3.92
1.00	CORSAIR N LOW - ALTERNATIVE 1 - H60_2	0.131	0.036	3.92
1.08	나 많아 되어 있다면 하는데 그리다면서 그 그리는데 그래에 가는데 모양되어 하는데 그리다면 되었다고 있다.			
N. DATTIONS	CORSAIR N LOW - ALTERNATIVE 1 - H60_3	0.131	0.036	3.92
1.08				
	CORSAIR N LOW - ALTERNATIVE 1- A29	1.503	0.078	45.08
2.33				
	CORSAIR N LOW - ALTERNATIVE 1- A29_2	1.503	0.078	45.08
2.33	*	4 500	0.070	45.00
0.00	CORSAIR N LOW - ALTERNATIVE 1- A29_3	1.503	0.078	45.08
2.33	541. 28. 15. CORSAIR N LOW - ALTERNATIVE 1- F18	0.369	0.019	11.00
0.58	framework and 1999 framework representations are a second framework from the control of the cont	0.309	0.019	11.08
0.30	113. 7. 33.			
88	MOA name = CORSAIR NORTH MOA			
10	NOA HAIRE - CONSAIR NORTH NOA	Dai	10	
Month:	ly Yearly	Va1	ry	
PION CH.	Mission	Day	Night	Day
Night			MIEUC	Day
HTE II C	Name	OPS	OPS	OPS
OPS	OPS OPS (minutes)	0.2	0, 2	0.5
	CORSAIR N - ALTERNATIVE 1- A10	5,825	0.647	174.75
19.42				
	CORSAIR N - ALTERNATIVE 1- A10 2	5.825	0.647	174.75
19.42				
	CORSAIR N - ALTERNATIVE 1- A10 3	5,825	0.647	174.75
19.42	2097. 233. 6.			
	CORSAIR N - ALTERNATIVE 1- A29	0.467	0.025	14.00
0.75	168. 9. 8.			
	CORSAIR N - ALTERNATIVE 1- A29_2	0.467	0.025	14.00
0.75	168. 9. 50.			
	CORSAIR N - ALTERNATIVE 1- A29_3	0.467	0.025	14.00
0.75				
	CORSAIR N - ALTERNATIVE 1- F18	0.672	0.036	20.17
1.08	242. 13. 33.			
100				
33	MOA name = CORSAIR SOUTH LOW MOA - 1000		1	
Marke	Total Market	Dai	Ly	
Month		D	112	0
Maria La	Mission	Day	Night	Day
Night	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		ODE	one
OPS	Name	OPS	OPS	OPS
UPS	OPS OPS (minutes) CORSAIR S LOW - ALTERNATIVE 1- A10	2,089	0.233	62.67
7,00		2.009	0.233	02.07
7.00	CORSAIR S LOW - ALTERNATIVE 1 A10_2	2.089	0.233	62.67
	CONSMIT 5 LOW - ALTERNATIVE 1 MIG_Z	2.009	0.233	02.07

7,00	752.	84.	14.			
			ATIVE 1- A10_3	2,089	0.233	62.67
7.00		84.	2.			
	CORSAIR S LOW	- ALTERNAT	TIVE 1 - C130	0.031	0.028	0.92
0.83		10.	3.			
			TIVE 1 - C130_2	0.031	0.028	0.92
0.83		10.	24.			
0.01			TIVE 1 - C130_3	0.031	0.028	0.92
0.83	11. CORSAIR S LOW		3. FTVE 1 UCO	0.131	0.036	3.92
1.08		13.	8.	0.131	0.056	5.92
1.00			TIVE 1 - H60_2	0.131	0.036	3.92
1.08		13.	128.	0.131	0.000	2.22
			TIVE 1 - H60 3	0.131	0.036	3.92
1.08	47.		15.	5.FG-F5-F6	200000	
	CORSAIR S LOW	- ALTERNAT	TIVE 1- A29	0.750	0.039	22.50
1.17	270.	14.	15.			
	CORSAIR S LOW		TIVE 1- A29_2	0.750	0.039	22.50
1.17		14.	47.			
			TIVE 1- A29_3	0.750	0.039	22.50
1.17	270.	14.	15.	150000	20022	1001100
0.50			TIVE 1- F18	0.369	0.019	11.08
0.58	133.	7.	33.			
0	MOA name = COR	SATE SOUTH	MOA			
100	rioa mane – con	3ATT 300711	The	Dai	lv.	
Month	ly	Yearly			7.6	
	Mission			Day	Night	Day
Night	Day	Night	Time On Range	0.056	1.785	2076
10	Name			OPS	OPS	OPS
OPS	OPS	OPS	(minutes)			
	CORSAIR S - A	ALTERNATIVE	1- A10	4,331	0.481	129.92
14,42			12.			
1013110204	CORSAIR S - /		A 1030 7-1	4.331	0.481	129.92
14,42		173.	42.	1141444	20022	outparent and
	CORSAIR S - /		#100 Company	4.331	0.481	129.92
14.42	1559.	173.	6.	1 700	0.073	44 67
2.17	CORSAIR S - A		8.	1.389	0.072	41.67
	500. CORSAIR S - Al	26.		1.389	0.072	41.67
2.17		26.	47.	1.369	0.072	41.07
	CORSAIR S - A			1.389	0.072	41.67
		26.				-4.07
-1-1	CORSAIR S - A	TERNATIVE	1- F18	0.917	0.067	27.50
	(1997) WHITH HERE					

MOA name - GRAND BAY MOA AND R3008C

24.

30.

330.

2.00

Daily

Month:	ly	Yearly				
	Mission	925 5 70005		Day	Night	Day
Night	Day	Night	Time On Range	1000	66.E86	1150
	Name			OPS	OP5	OP5
OPS	OPS	OPS	(minutes)			
	R3008C - ALTI		- CONTROL - CONT	7,850	0.872	235.50
26.17		314.	4.	0.000000	5.51.T-10.T-1	
70000	R3008C - ALTI			7.850	0.872	235.50
26.17			14.	.,	0.0.2	223130
	R3008C - ALTI	27.75.000	19.77 (S.D.)	7.850	0.872	235.50
26.17		314.	1.	7.030	0.0.2	233.30
20.17	R3008C - ALTI		-135 JOSEPH - 1781 EV	2.761	0.144	82.83
4.33		52.	1.	2.701	0.144	02.03
4.33	R3008C - ALTI		100000000000000000000000000000000000000	2,761	0.144	82.83
4.33			6.	2.701	0,144	02.03
4.55				0.764	0.111	02.02
	R3008C - ALTI		112233	2.761	0.144	82.83
4.33		52.	2.	6.026	6 acc	44.44
	R3008C - ALTI			0.378	0.356	11.33
10.67		128.	3.	250000000000000000000000000000000000000	677638787	12/2/7000
	R3008C - ALTI			0.378	0.356	11.33
10.67			24.			
	R3008C - ALTI			0.378	0.356	11.33
10.67		128.	3.			
	R3008C - ALTE		F35	0.031	0.003	0.92
0.08		1.	8.			
	R3008C - ALTI	ERNATIVE 1 -	- H60	1.972	0.525	59.17
15.75	710.	189.	6.			
	R3008C - ALTI	ERNATIVE 1 -	- H60_2	1.972	0.525	59.17
15.75	710.	189.	30.			
	R3008C - ALTE	ERNATIVE 1 -	- H60_3	1.972	0.525	59.17
15.75	710.	189.	4.			
2.0		ALL DESCRIPTION	Fr			
8	MOA name – HAI	MG NORTH MO	4		100.000	
	Q. (25)	200000000000000000000000000000000000000		Dail	Ly	
Month:		Yearly		22000		
1316	Mission	10 60	28	Day	Night	Day
Night		Night	Time On Range			
	Name		2,880	OPS	OPS	OPS
OPS	OPS	OPS	(minutes)			
	HANG N - ALTE			4.708	0.522	141.25
15.67			10.			
	HANG N - ALTE	ERNATIVE 1 -		4.708	0.522	141.25
15.67		188.	35.			
	HANG N - ALTE	ERNATIVE 1 -	- A10_3	4.708	0.522	141.25
15.67	1695.	188.	5.			
	HAWG N - ALTE	ERNATIVE 1	- F18	0.117	0.006	3.50
0.17	42.	2.	116.			

- 0	MOA name = HAWG	SOUTH MOA	4	100000		
Month	Ts.	Vanalu		Dai	ly	
Month.	The Control of the Co	Yearly		Devi	tid white	Dani
sed alone	Mission	and whole	Time on Bear	Day	Night	Day
Night		MIGHT	Time On Range	one	OPS	one
OBC	Name	one	(missister)	OPS	UPS	OP5
OPS	OPS	OPS	(minutes)	4.700	0.533	444.35
	HANG S - ALTERN			4.708	0.522	141.25
15.67	1695.	188.	10.	4 700	0 533	444.35
45 65	HANG S - ALTERN			4.708	0.522	141.25
15.67	1695.	188.	35.			
45. 65	HANG S - ALTERN			4.708	0.522	141.25
15.67		188.	5.			0720
	HANG 5 - ALTERN			0.117	0.006	3.50
0.17	42.	2.	116.			
3	MOA name = LATN					
				Dai	ly	
Month.	ly	Yearly				
	Mission			Day	Night	Day
Night	Day	Night	Time On Range			
	Name			OPS	OPS	OPS
OPS	OPS	OPS	(minutes)			
	LATH - EXISTING	- A10		7.850	0.872	235.50
26.17	2826.	314.	2.			
	LATH - EXISTING	- A10 2		7.850	0.872	235.50
26.17	2826.	314.	8.			
	LATH - EXISTING	G - A10 3		7.850	0.872	235.50
26.17	2826.	314.	1.			
	LATH - EXISTING	G - C130		1,419	1,336	42.58
40.08	511.	481.	3.			
	LATH - EXISTING	G - C130 2	2	1,419	1,336	42.58
40,08	511.	481.	24.			
	LATH - EXISTING	5 - C130 3	3	1.419	1.336	42.58
40.08	511.	481.	3.			
	LATH - EXISTING	5 - H60		2.961	0.786	88.83
23.58	1066.	283.	2.			
	LATH - EXISTING	- H60 2		2.961	0.786	88.83
23.58		283.	25.			
	LATH - EXISTING	a - H60 3		2.961	0.786	88.83
23.58		283.	4.			
1	MOA name = MOODY	/ 2 NORTH	MOA - 100			
				Dai	ly	
Month:	ly	Yearly			1 3	
	Mission	52.000		Day	Night	Day
Night	Day	Night	Time On Range	6000b	and the second	425.55%
27	Name	8	70	OPS	OPS	OPS

OPS	OPS	OPS			(minutes)			
., .		ALTERNATIVE				4,708	0.522	141.25
15.67			68		4.		13/10/700	
		ALTERNATIVE	1	_	A10 2	4,708	0.522	141.25
15.67					14.			
	MOODY 2N -	ALTERNATIVE	1	-		4.708	0.522	141.25
15.67					2.			
	MOODY 2N -	ALTERNATIVE	1	-	A29	1.108	0.050	33.25
1.50	399.	18.			15.			
	MOODY 2N -	ALTERNATIVE	1	-	A29_2	1.108	0.050	33.25
1.50		18.			47.			
		ALTERNATIVE	1	-		1.108	0.050	33.25
1.50		18.			77.			
		ALTERNATIVE	1	-		0.333	0.314	10.00
9.42	277333				3.			
		ALTERNATIVE	1	-	25.04 Y-04	0.333	0.314	10.00
9,42		113.	_		24.	1201220	2010022	200
		ALTERNATIVE	1	-		0.333	0.314	10.00
9,42	WORLD DESCRIPTION OF THE PARTY		25		3.		20222	
		ALTERNATIVE				0.831	0.044	24.92
1.33					43.			F2 25
44 47		ALTERNATIVE				1.775	0.472	53.25
14.17					8.	4 775	0.472	53.25
14.17		ALTERNATIVE 170.	1	7	128.	1.775	0.472	55.25
14.17		ALTERNATIVE	4			1.775	0.472	53.25
14.17			1		15.	1.7/3	0.472	33.23
,	40A name = 1	MOODY 2 SOUTH	1 14	0.	4			
						Dai:	ly	
Month.	N. C.	Yearly					\$1545E100	
554254000	Mission	Artistantian terre		150	2000 0 CO. O. O	Day	Night	Day
Night	0.000	Night		T:	ime On Range			
	Name				(OPS	OP5	OP5
OPS	OPS	OPS			(minutes)		0 533	444.55
45.63		ALTERNATIVE	1	-		4.708	0.522	141.25
15.67			1		4.	4.708	0.522	141.25
15.67		ALTERNATIVE 188.	+		14.	4.700	0.522	141.25
15.07		ALTERNATIVE	1			4.708	0.522	141.25
15.67					2.	4.700	0.322	141.23
13.07		ALTERNATIVE				0.942	0.050	28.25
1,50					15.	0.342	0.030	20.23
1.50		ALTERNATIVE	1	_		0.942	0.050	28.25
1.50			ै		47.		7.1.	
2.50		ALTERNATIVE	1	-		0.942	0.050	28.25
1,50		18.	-		77.	92.4594 7 6	5,0.5.5	
	MOODY 25 -	ALTERNATIVE	1	-	C130	0.333	0.314	10.00
9.42		113.			3.			

9.42 120 113 24. MOODY 25 - ALTERNATIVE 1 - C130_3 0.333 0.314 10.00 9.42 120. 113. 3. MOODY 25 - ALTERNATIVE 1 - F18 0.831 0.044 24.92 1.33 299. 16. 43. MOODY 25 - ALTERNATIVE 1 - H60 1.775 0.472 53.25 14.17 639. 170. 8. MOODY 25 - ALTERNATIVE 1 - H60_2 1.775 0.472 53.25 14.17 639. 170. 128. MOODY 25 - ALTERNATIVE 1 - H60_3 1.775 0.472 53.25 14.17 639. 170. 128. MOODY 25 - ALTERNATIVE 1 - H60_3 1.775 0.472 53.25 14.17 639. 170. 15. MOO name = MUSTANG LOW MOA - 1000 MOA name = MUSTANG LOW MOA - 1000 Might Day Night Time On Range Name OPS OPS OPS OPS MUSTANG LOW MOA - ALTERNATIVE 1 - C130 0.031 0.028 0.92 0.83 11. 10. 24. MUSTANG LOW MOA - ALTERNATIVE 1 - C130_2 0.031 0.028 0.92 0.83 11. 10. 24. MUSTANG LOW MOA - ALTERNATIVE 1 - C130_3 0.031 0.028 0.92 0.83 11. 10. 24. MUSTANG LOW MOA - ALTERNATIVE 1 - C130_3 0.031 0.028 0.92 0.83 11. 10. 24. MUSTANG LOW MOA - ALTERNATIVE 1 - C130_3 0.031 0.028 0.92 0.83 11. 10. 3. MUSTANG LOW MOA - ALTERNATIVE 1 - H60_2 0.131 0.036 3.92 0.83 11. 10. 3. MUSTANG LOW MOA - ALTERNATIVE 1 - H60_2 0.131 0.036 3.92 0.84 47. 13. 8. MUSTANG LOW MOA - ALTERNATIVE 1 - H60_2 0.131 0.036 3.92 1.08 47. 13. 8. MUSTANG LOW MOA - ALTERNATIVE 1 - H60_3 0.131 0.036 3.92 1.08 47. 13. 15. MUSTANG LOW MOA - ALTERNATIVE 1 - H60_2 0.131 0.036 3.92 1.08 47. 13. 15. MUSTANG LOW MOA - ALTERNATIVE 1 - H60_3 0.131 0.036 3.92 1.08 47. 13. 15. MUSTANG LOW MOA - ALTERNATIVE 1 - H60_3 0.131 0.036 3.92 1.08 47. 13. 15. MUSTANG LOW MOA - ALTERNATIVE 1 - AL0_2 2.089 0.233 62.67 7.00 752. 84. 4. MUSTANG LOW MOA - ALTERNATIVE 1 - AL0_2 2.089 0.233 62.67 7.00 752. 84. 14. MUSTANG LOW MOA - ALTERNATIVE 1 - AL0_3 2.089 0.233 62.67 7.00 752. 84. 14. MUSTANG LOW MOA - ALTERNATIVE 1 - AL0_3 2.089 0.233 62.67 7.00 752. 84. 14. MUSTANG LOW MOA - ALTERNATIVE 1 - AL0_3 2.089 0.233 62.67 7.00 752. 84. 14. MUSTANG LOW MOA - ALTERNATIVE 1 - AL0_3 2.089 0.233 62.67 7.00 752. 84. 14. MUSTANG LOW MOA - ALTERNATIVE 1 - AL0_3 2.089 0.233 62.67 7.00 752. 84. 14. MUSTANG LOW MOA - ALTERNATIVE 1 - AL0_3 2.0		MOODY 25 - /	ALTERNATIVE 1 - C130_2	0,333	0.314	10.00
9.42 120 113. 3. MOODY 2S - ALTERNATIVE 1 - F18	9,42					
9.42 120 113. 3. MOODY 2S - ALTERNATIVE 1 - F18		MOODY 25 - /	ALTERNATIVE 1 - C130 3	0,333	0.314	10.00
1.33	9.42		0.00000			
MOODY 2S - ALTERNATIVE 1 - H60		MOODY 2S - A	ALTERNATIVE 1 - F18	0.831	0.044	24.92
14.17 639. 170. 8. MOODY 2S - ALTERNATIVE 1 - H60_2 1.775 0.472 53.25 14.17 639. 170. 128. MOODY 2S - ALTERNATIVE 1 - H60_3 1.775 0.472 53.25 14.17 639. 170. 15. MOA name = MUSTANG LOW MOA - 1000 Monthly Yearly Mission Day Night Day Nume OPS	1.33	299.	16. 43.			
MOODY 2S - ALTERNATIVE 1 - H60 2		MOODY 25	ALTERNATIVE 1 - H60	1.775	0.472	53.25
14.17 639. 170. 128. MOODY 25 - ALTERNATIVE 1 - H60 3 1.775 0.472 53.25 14.17 639. 170. 15. MOA name = MUSTANG LOW MOA - 1000 Monthly Yearly Mission Day Night Day Might Day Name OPS OPS OPS OPS OPS MUSTANG LOW MOA - ALTERNATIVE 1 - C130 0.031 0.028 0.92 0.83 11. 10. 3. MUSTANG LOW MOA - ALTERNATIVE 1 - C130 0.031 0.028 0.92 0.83 11. 10. 24. MUSTANG LOW MOA - ALTERNATIVE 1 - C130_3 0.031 0.028 0.92 0.83 11. 10. 3. MUSTANG LOW MOA - ALTERNATIVE 1 - C130_3 0.031 0.028 0.92 0.83 11. 10. 3. MUSTANG LOW MOA - ALTERNATIVE 1 - H60 0.131 0.036 3.92 1.08 47. 13. 8. MUSTANG LOW MOA - ALTERNATIVE 1 - H60 0.131 0.036 3.92 1.08 47. 13. 128. MUSTANG LOW MOA - ALTERNATIVE 1 - H60_2 0.131 0.036 3.92 1.08 47. 13. 128. MUSTANG LOW MOA - ALTERNATIVE 1 - H60_3 0.131 0.036 3.92 1.08 47. 13. 128. MUSTANG LOW MOA - ALTERNATIVE 1 - H60_3 0.131 0.036 3.92 1.08 47. 13. 128. MUSTANG LOW MOA - ALTERNATIVE 1 - H00_3 0.131 0.036 3.92 1.08 47. 13. 128. MUSTANG LOW MOA - ALTERNATIVE 1 - Al0 2.089 0.233 62.67 7.00 752. 84. 14. MUSTANG LOW MOA - ALTERNATIVE 1 - Al0 2.089 0.233 62.67 7.00 752. 84. 14. MUSTANG LOW MOA - ALTERNATIVE 1 - Al0 3 2.089 0.233 62.67 7.00 752. 84. 14. MUSTANG LOW MOA - ALTERNATIVE 1 - Al0 3 2.089 0.233 62.67 7.00 752. 84. 14. MUSTANG LOW MOA - ALTERNATIVE 1 - Al0 3 2.089 0.233 62.67 7.00 752. 84. 14. MUSTANG LOW MOA - ALTERNATIVE 1 - Al0 3 2.089 0.233 62.67 7.00 752. 84. 2. MUSTANG LOW MOA - ALTERNATIVE 1 - Al0 3 2.089 0.233 62.67 7.00 752. 84. 2. MUSTANG LOW MOA - ALTERNATIVE 1 - Al0 3 2.089 0.233 62.67 8.5 4. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1 - Al0 3 0.150 0.008 4.50 8.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1 - F18 0.369 0.019 11.08	14.17	639.	170. 8.			
14.17 639. 170. 128. MOODY 25 - ALTERNATIVE 1 - H60 3 1.775 0.472 53.25 14.17 639. 170. 15. MOA name = MUSTANG LOW MOA - 1000 Monthly Yearly Mission Name OPS OPS OPS OPS OPS OPS MUSTANG LOW MOA - ALTERNATIVE 1 - C130 0.031 0.028 0.92 0.83 11. 10. 3. MUSTANG LOW MOA - ALTERNATIVE 1 - C130 0.031 0.028 0.92 0.83 11. 10. 24. MUSTANG LOW MOA - ALTERNATIVE 1 - C130 0.031 0.028 0.92 0.83 11. 10. 3. MUSTANG LOW MOA - ALTERNATIVE 1 - C130 0.031 0.028 0.92 0.83 11. 10. 3. MUSTANG LOW MOA - ALTERNATIVE 1 - H60 0.131 0.036 3.92 1.88 47. 13. 8. MUSTANG LOW MOA - ALTERNATIVE 1 - H60 0.131 0.036 3.92 1.08 47. 13. 128. MUSTANG LOW MOA - ALTERNATIVE 1 - H60 1.131 0.036 3.92 1.08 47. 13. 128. MUSTANG LOW MOA - ALTERNATIVE 1 - H60 0.131 0.036 3.92 1.08 47. 13. 128. MUSTANG LOW MOA - ALTERNATIVE 1 - H60 1.131 0.036 3.92 1.08 47. 13. 128. MUSTANG LOW MOA - ALTERNATIVE 1 - H60 1.131 0.036 3.92 1.08 47. 13. 128. MUSTANG LOW MOA - ALTERNATIVE 1 - H60 1.131 0.036 3.92 1.08 47. 13. 128. MUSTANG LOW MOA - ALTERNATIVE 1 - H00 2.089 0.233 62.67 7.00 752. 84. 14. MUSTANG LOW MOA - ALTERNATIVE 1 - A10 2.089 0.233 62.67 7.00 752. 84. 14. MUSTANG LOW MOA - ALTERNATIVE 1 - A10 3 2.089 0.233 62.67 7.00 752. 84. 14. MUSTANG LOW MOA - ALTERNATIVE 1 - A20 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1 - A29 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1 - A29 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1 - A29 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1 - F18 0.369 0.019 11.08		MOODY 2S - A	ALTERNATIVE 1 - H60_2	1.775	0.472	53.25
MOA name = MUSTANG LOW MOA - 1000 Monthly Yearly Mission Day Night Time On Range Name OPS OPS OPS OPS MUSTANG LOW MOA - ALTERNATIVE 1 - C130	14.17					
MOA name = MUSTANG LOW MOA - 1000 Monthly Yearly Day Might Day		MOODY 25 - A	ALTERNATIVE 1 - H60_3	1.775	0.472	53.25
Monthly Yearly Mission Night Time On Range Name OPS OPS OPS OPS OPS OPS OPS (minutes) MUSTANG LOW MOA - ALTERNATIVE 1 - C130 0.031 0.028 0.92 0.83 11. 10. 24. MUSTANG LOW MOA - ALTERNATIVE 1 - C130_3 0.031 0.028 0.92 0.83 11. 10. 24. MUSTANG LOW MOA - ALTERNATIVE 1 - C130_3 0.031 0.028 0.92 0.83 11. 10. 3. MUSTANG LOW MOA - ALTERNATIVE 1 - C130_3 0.031 0.028 0.92 1.08 47. 13. 3. MUSTANG LOW MOA - ALTERNATIVE 1 - H60 0.131 0.036 3.92 1.08 47. 13. 128. MUSTANG LOW MOA - ALTERNATIVE 1 - H60_2 0.131 0.036 3.92 1.08 47. 13. 128. MUSTANG LOW MOA - ALTERNATIVE 1 - H60_3 0.131 0.036 3.92 1.08 47. 13. 15. MUSTANG LOW MOA - ALTERNATIVE 1 - H60_3 0.131 0.036 3.92 1.08 47. 13. 15. MUSTANG LOW MOA - ALTERNATIVE 1 - A10_2 2.089 0.233 62.67 7.00 752. 84. 4. MUSTANG LOW MOA - ALTERNATIVE 1 - A10_2 2.089 0.233 62.67 7.00 752. 84. 14. MUSTANG LOW MOA - ALTERNATIVE 1 - A10_2 2.089 0.233 62.67 7.00 752. 84. 14. MUSTANG LOW MOA - ALTERNATIVE 1 - A10_3 2.089 0.233 62.67 7.00 752. 84. 14. MUSTANG LOW MOA - ALTERNATIVE 1 - A10_2 2.089 0.233 62.67 7.00 752. 84. 14. MUSTANG LOW MOA - ALTERNATIVE 1 - A20_2 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1 - A29_2 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1 - A29_3 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1 - A29_3 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1 - A29_3 0.150 0.008 4.50	14.17	639.	170. 15.			
Monthly Yearly Mission Night Time On Range Name OPS OPS OPS OPS OPS OPS OPS (minutes) MUSTANG LOW MOA - ALTERNATIVE 1 - C130 0.031 0.028 0.92 0.83 11. 10. 24. MUSTANG LOW MOA - ALTERNATIVE 1 - C130_3 0.031 0.028 0.92 0.83 11. 10. 24. MUSTANG LOW MOA - ALTERNATIVE 1 - C130_3 0.031 0.028 0.92 0.83 11. 10. 3. MUSTANG LOW MOA - ALTERNATIVE 1 - C130_3 0.031 0.028 0.92 1.08 47. 13. 3. MUSTANG LOW MOA - ALTERNATIVE 1 - H60 0.131 0.036 3.92 1.08 47. 13. 128. MUSTANG LOW MOA - ALTERNATIVE 1 - H60_2 0.131 0.036 3.92 1.08 47. 13. 128. MUSTANG LOW MOA - ALTERNATIVE 1 - H60_3 0.131 0.036 3.92 1.08 47. 13. 15. MUSTANG LOW MOA - ALTERNATIVE 1 - H60_3 0.131 0.036 3.92 1.08 47. 13. 15. MUSTANG LOW MOA - ALTERNATIVE 1 - A10_2 2.089 0.233 62.67 7.00 752. 84. 4. MUSTANG LOW MOA - ALTERNATIVE 1 - A10_2 2.089 0.233 62.67 7.00 752. 84. 14. MUSTANG LOW MOA - ALTERNATIVE 1 - A10_2 2.089 0.233 62.67 7.00 752. 84. 14. MUSTANG LOW MOA - ALTERNATIVE 1 - A10_3 2.089 0.233 62.67 7.00 752. 84. 14. MUSTANG LOW MOA - ALTERNATIVE 1 - A10_2 2.089 0.233 62.67 7.00 752. 84. 14. MUSTANG LOW MOA - ALTERNATIVE 1 - A20_2 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1 - A29_2 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1 - A29_3 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1 - A29_3 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1 - A29_3 0.150 0.008 4.50	23	101 W	UCTANC LOW MOA 1000			
Monthly Mission Day Night Time On Range Name OPS		MUA Hame = M	DSTANG LOW MOA - 1000	Dai	10	
Night Name OPS	Month	10	Vaanly	Val	1y	
Night Name OPS	Pioli Cit.	Mission	1early	Dav	Milabt	Day
Name		Day	Night Time On Pange		BILL	udy
OPS OPS (minutes) MUSTANG LON MOA - ALTERNATIVE 1 - C130	MIENC		Might Time on Kunge		OPS	OPS
MUSTANG LOW MOA - ALTERNATIVE 1 - C130	OPS		OPS (minutes)	0, 3	0, 5	0, 3
0.83				0.031	0.028	0.92
0.83	0.83					
0.83		MUSTANG LOW	MOA - ALTERNATIVE 1 - C130	0.031	0.028	0.92
0.83	0.83	11.	10. 24.			
MUSTANG LON MOA - ALTERNATIVE 1 - H60		MUSTANG LOW	MOA - ALTERNATIVE 1 - C138	3 0.031	0.028	0.92
1.08	0.83	11.	10. 3.	VIII. RESSERVE FRANCE		
MUSTANG LON MOA - ALTERNATIVE 1 - H60_2				0.131	0.036	3.92
1.08	1.08	47.	13. 8.			
MUSTANG LOW MOA - ALTERNATIVE 1 - H60_3			100 C	2 0.131	0.036	3.92
1.08	1.08					
MUSTANG LOW MOA - ALTERNATIVE 1- A10 2.089 0.233 62.67 7.00 752. 84. 4. MUSTANG LOW MOA - ALTERNATIVE 1- A10_2 2.089 0.233 62.67 7.00 752. 84. 14. MUSTANG LOW MOA - ALTERNATIVE 1- A10_3 2.089 0.233 62.67 7.00 752. 84. 2. MUSTANG LOW MOA - ALTERNATIVE 1- A29 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1- A29_2 0.150 0.008 4.50 0.25 54. 3. 47. MUSTANG LOW MOA - ALTERNATIVE 1- A29_3 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1- A29_3 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1- F18 0.369 0.019 11.08		MUSTANG LOW	MOA - ALTERNATIVE 1 - H60_	3 0.131	0.036	3.92
7.00 752. 84. 4. MUSTANG LOW MOA - ALTERNATIVE 1- A10_2 2.089 0.233 62.67 7.00 752. 84. 14. MUSTANG LOW MOA - ALTERNATIVE 1- A10_3 2.089 0.233 62.67 7.00 752. 84. 2. MUSTANG LOW MOA - ALTERNATIVE 1- A29 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1- A29_2 0.150 0.008 4.50 0.25 54. 3. 47. MUSTANG LOW MOA - ALTERNATIVE 1- A29_3 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1- A29_3 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1- F18 0.369 0.019 11.08	1.08			1447704100	190000000	***********
MUSTANG LOW MOA - ALTERNATIVE 1- A10_2 2.089 0.233 62.67 7.00 752. 84. 14. MUSTANG LOW MOA - ALTERNATIVE 1- A10_3 2.089 0.233 62.67 7.00 752. 84. 2. MUSTANG LOW MOA - ALTERNATIVE 1- A29 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1- A29_2 0.150 0.008 4.50 0.25 54. 3. 47. MUSTANG LOW MOA - ALTERNATIVE 1- A29_3 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1- A29_3 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1- F18 0.369 0.019 11.08				2.089	0.233	62.67
7.00 752. 84. 14. MUSTANG LOW MOA - ALTERNATIVE 1- A10_3 2.089 0.233 62.67 7.00 752. 84. 2. MUSTANG LOW MOA - ALTERNATIVE 1- A29 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1- A29_2 0.150 0.008 4.50 0.25 54. 3. 47. MUSTANG LOW MOA - ALTERNATIVE 1- A29_3 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1- A29_3 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1- F18 0.369 0.019 11.08	7.00	/52.	84. 4.	3 000	0. 737	en en
MUSTANG LOW MOA - ALTERNATIVE 1- A10_3 2.089 0.233 62.67 7.00 752. 84. 2. MUSTANG LOW MOA - ALTERNATIVE 1- A29 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1- A29_2 0.150 0.008 4.50 0.25 54. 3. 47. MUSTANG LOW MOA - ALTERNATIVE 1- A29_3 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1- A29_3 0.369 0.019 11.08	7 00			2,089	0.233	02.07
7.00 752. 84. 2. MUSTANG LOW MOA - ALTERNATIVE 1- A29 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1- A29 2 0.150 0.008 4.50 0.25 54. 3. 47. MUSTANG LOW MOA - ALTERNATIVE 1- A29_3 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1- F18 0.369 0.019 11.08	7.00			2 000	0.222	63 67
MUSTANG LOW MOA - ALTERNATIVE 1- A29 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1- A29_2 0.150 0.008 4.50 0.25 54. 3. 47. MUSTANG LOW MOA - ALTERNATIVE 1- A29_3 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1- F18 0.369 0.019 11.08	7 00			2.009	0.233	02.07
0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1- A29_2 0.150 0.008 4.50 0.25 54. 3. 47. MUSTANG LOW MOA - ALTERNATIVE 1- A29_3 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1- F18 0.369 0.019 11.08	7.00			0.150	0 000	4 50
MUSTANG LOW MOA - ALTERNATIVE 1- A29_2 0.150 0.008 4.50 0.25 54. 3. 47. MUSTANG LOW MOA - ALTERNATIVE 1- A29_3 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1- F18 0.369 0.019 11.08	0 25			0.130	0.000	4.50
0.25 54. 3. 47. MUSTANG LOW MOA - ALTERNATIVE 1- A29_3 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1- F18 0.369 0.019 11.08	0.23			0.150	0.008	4.50
MUSTANG LOW MOA - ALTERNATIVE 1- A29_3 0.150 0.008 4.50 0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1- F18 0.369 0.019 11.08	0.25			07130	0.000	4130
0.25 54. 3. 15. MUSTANG LOW MOA - ALTERNATIVE 1- F18 0.369 0.019 11.08				0.150	0.008	4.50
MUSTANG LOW MOA - ALTERNATIVE 1- F18 0.369 0.019 11.08					5.5(5.55)	20,000
0.58 133. 7. 33.		MUSTANG LOW		0.369	0.019	11.08
	0.58	133.	7. 33.			

MOA name = MUSTANG MOA

				Dai	ly	
Month:	ly	Yearly				
	Mission			Day	Night	Day
Night	Day	Night	Time On Range			
	Name			OPS	OPS	OPS
OPS	OPS	OPS	(minutes)			
	MUSTANG - AI	TERNATIVE	1 - A10	5.539	0.617	166.17
18.50	1994.	222.	12.			
	MUSTANG - AI	TERNATIVE.	1 - A10_2	5.539	0.617	166.17
18.50	1994.	222.	42.			
	MUSTANG - AI	TERNATIVE	1 - A10_3	5.539	0.617	166.17
18.50	1994.	222.	6.			
	MUSTANG - AL	TERNATIVE	1 - F35	0.758	0.039	22.75
1.17	273.	14.	38.			
	MUSTANG - ALT	TERNATIVE 1	- F18	1.289	0.067	38.67
2,00	464.	24.	30.			
4	MOA name - R30	308AB				
				Dai	1v	
Month.	lν	Yearly				
	Mission	1766.35		Day	Night	Day
Night		Night	Time On Range			
	Name	(2)(1)(1)(10(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(OPS	OPS	OPS
OPS	OPS	OPS	(minutes)			
	R3008AB - EXT			7.850	0.872	235.50
26.17		314,	10.	7.000	0.01.	
20,1,	R3008AB - EXT		(C. C. C	7.850	0.872	235.50
26.17		314.	34.	7.000	0.012	2,531,30
20.17	R3008AB - EX			7.850	0.872	235.50
26.17		314.	5.	7.000	0.012	2.000
20.17	R3008AB - EXI	100000000000000000000000000000000000000		2,761	0.144	82.83
4,33		52.	3.	2,701	0.144	02.03
4,33	R3008AB - EXI			2,761	0.144	82.83
4.33		52.	15.	2.701	0.194	02.03
4.33	R3008AB - EX			2,761	0.144	82.83
4.33		52.	7.	2.701	0.144	02.03
4.33	R3008AB - EX			0.378	0.356	11.33
10.67		128.	12.	0.370	0.330	11.55
10.07	R3008AB - EX			0.379	0.356	11 22
10.67		128.	96.	0.378	0.350	11.33
10.07				0.370	0.256	44 33
10 77	R3008AB - EX		A COLOR SERVICE	0.378	0.356	11.33
10.67		128.	12.	0.004	0.000	0.00
0.00	R3008AB - EX			0.031	0.003	0.92
0.08		1.	32.	4 070	0.505	FO 47
22380	R3008AB - EX			1.972	0.525	59.17
15,75		189.	6.			
	R3008AB - EX			1.972	0.525	59.17
15.75		189.	99.	100 00000	277222	10.000000000
	R3008AB - EXX	ISTING H6	Ø_3	1.972	0.525	59.17

15,75	710.	189.	15.			
9	MOA name – SAB	RE MOA				
44 a n + la	1	Wa no lu		Dai	ly	
Month.	Mission	Yearly		Day	Night	Day
Night		Milabit	Time On Range	Day	Migne	Day
migne	Name	MIRHE	Time on kange	OPS	OPS	OPS
OPS	OPS	OPS	(minutes)	UPS	UP3	GI-3
OFS	SABRE - EXIST		(minutes)	0.864	0.044	25.92
1.33		16.	32,	0.004	0.044	23.32
	SABRE - EXIST			0.047	0.003	1,42
0.08		1.	40.			
8	MOA name – THU	ID LOW MOA				
- 10	no name in	D ZON THOM		Dai	ly	
Month:	ly	Yearly			267	
	Mission	133		Day	Night	Day
Night	Day	Night	Time On Range			
	Name			OPS	OPS	OPS
OPS	OPS	OPS	(minutes)			
	THUD - ALTERN			3.450	0.383	103.50
11.50		138.	12.			
	THUD - ALTERN		() () () ()	3.450	0.383	103.50
11.50		138.	42.	70 112227	07/10/2020	3302.00 52.00
2027 3400	THUD - ALTERN		Control and Contro	3.450	0.383	103.50
11.50		138.	6.	4 040	0.055	24.25
4 62	THUD - ALTERN			1.042	0.056	31.25
1.67		20.	30.	0 770	0.043	22.22
1,25	THUD - ALTERN 280.	15.	-35 38.	0.778	0.042	23.33
1,23	200.	15.	50.			
ğ	MOA name - WAR	HAWK LOW MA	OA - 1000	-	ly	
Month:	lv.	Yearly		Dal	Ty	
PIDIT CTI	Mission	rearry		Day	Night	Day
Night		Micht	Time On Range	bay	might	bay
HTP.I.C	Name	14+Birc	Tame on Nange	OPS	OPS	OPS
OPS	OPS	OPS	(minutes)			
			NATIVE 1 - C130	0.031	0.028	0.92
0.83		10.	3.			
			WATIVE 1 - C130_2	0.031	0.028	0.92
0.83		10.	24.			
	WARHAWK LOW M		NATIVE 1 - C130_3	0.031	0.028	0.92
0.83		10.	3.			
	WARHAWK LOW M	OA - ALTERI	NATIVE 1 - H60	0.131	0.036	3.92
1.08	47.	13.	8.			

			TIVE 1 - H60_2	0.131	0.036	3.92
1.08	47.	13.	25.			
	WARHAWK LOW I	MOA - ALTERNA	TIVE 1 - H60_3	0.131	0.036	3.92
1.08	47.	13.	15.			
	WARHAWK LOW I	MOA - ALTERNAT	TIVE 1- A10	2.089	0.233	62.67
7.00	752.	84.	4.			
			TIVE 1- A10_2	2.089	0.233	62.67
7.00	752.	84.	14.			
	WARHAWK LOW I	MOA - ALTERNAT	14. FIVE 1- A10_3	2.089	0.233	62.67
7.00	752.					
	WARHAWK LOW I	MOA - ALTERNAT	TIVE 1- A29	0.100	0.006	3.00
0.17	36.	2.	15.			
	WARHAWK LOW I	MOA - ALTERNAT	TIVE 1- A29_2	0.100	0.006	3.00
0.17	36.		47.			
		MOA - ALTERNAT	TIVE 1- A29_3	0.100	0.006	3.00
0.17	36.	2.	15.			
	WARHAWK LOW I	MOA - ALTERNA	TIVE 1- F18	0.369	0.019	11.08
0.58	133.	7.	33.			
	MOA name - WA	RHAWK MOA		Dai	1y	
Monthly		Yearly				
	Mission			Day	Night	Day
Night	Day	Night	Time On Range			
	Name			OPS	OPS	OPS
OPS	OPS	OPS	(minutes)			
	WARHAWK - AL	TERNATIVE 1 -	A10	5.539	0.617	166.17
18,50	1994.	222.	12.			
	WARHAWK - AL	TERNATIVE 1 -	A10_2	5.539	0.617	166.17
	1994.					
	WARHAWK - AL	TERNATIVE 1 -	A10_3	5.539	0.617	166.17
18,50	1994.	222.	6.			
	WARHAWK - AL	TERNATIVE 1 -	F18	1.389	0.072	41.67
2.17	500.		30.			
		TERNATIVE 1 -		0.753	0.039	22.58
1.17	271.	14.	38.			

Warning: Grid points spaced greater than 1000 feet apart may not provide the necessary grid resolution, in some cases, to compute noise contours with high accuracy. For low-altitude track operations, the recommended grid spacing is less than 1000 feet.

***** MOA RANGE NOISEMAP ***** RESULTS

The noise metric is Ldnmr.

		MOA RESU	LTS		
		U	niform	1	Number
of					
	MOA	MOA Di	stributed	Da	ily
Event	ts Above				
	Name	Area So	und Level	SI	L of
65.0	dB				
		(sq statute miles)	(dB)		
	CORSAIR NORTH LOW MOA - 1000	755.3	35.0		0.0
	CORSAIR NORTH LOW MOA - 2000	755.3 No	operations	on	this
MOAT					
	CORSAIR NORTH LOW MOA - 4000	755.3 No	operations	on	this
MOA!					
	CORSAIR NORTH MOA	755.3	35.0		0.0
	CORSAIR SOUTH LOW MOA - 1000	591.9	35.0		0.0
	CORSAIR SOUTH LOW MOA - 2000	591.9 No	operations	on	this
MOA!					
	CORSAIR SOUTH LOW MOA - 4000	591.9 No	operations	on	this
MOA!					
	CORSAIR SOUTH MOA	591.9	35.0		0.0
	GRAND BAY MOA AND R3008C	89.2	51.0		0.0
	HAMG NORTH MOA	779.1	35.0		0.0
	HANG SOUTH MOA	704.3	35.0		0.0
	LATN	4200.0	35.0		0.0
	MOODY 2 NORTH MOA	420.7 No	operations	on	this
MOA!					
	MOODY 2 NORTH MOA - 100	420.7	44.6		0.0
	MOODY 2 SOUTH MOA	536.4	42.0		0.0
	MUSTANG LOW MOA - 1000	470.3	35.0		0.0
	MUSTANG LOW MOA - 2000	470.3 No	operations	on	this
MOA!					
	MUSTANG LOW MOA - 4000	470.3 No	operations	on	this
MOA!					
	MUSTANG MOA	470.3	39.3		0.0
	R3008AB	34.1	59.7		0.0
	R3008C	89.2 No	operations	on	this
MOA!					
	SABRE MOA	1599,8	35.0		0.0
	THUD LOW MOA	658.3	40.7		0.2
	THUD MOA	658.3 No	operations	on	this
MOAT					
	WARHAWK LOW MOA - 1000	682.0	35.0		0.0

	WARHAWK	LOW	AOM	- 2000	682.0 No	operations	on	this
MOA!								
	MARHAWK	LOW	MOA	- 4000	682.0 No	operations	on	this
MOAT								
	WARHAWK	MOA			682.0	37.6		0.4

***** MOA RANGE NOISEMAP ***** RESULTS

SPECIFIC POINT RESULTS

Specific Point: CORSAIR N POI Top 20 contributors to this level:

Sound Level	
< Aircraft (dB) HA(%)	> Mission
Aircraft (dB) HA(%)	
LATN	LATN - EXISTING - A10_2
A-10A < 35.0	
CORSAIR NORTH LOW MOA - 1000	CORSAIR N LOW - ALTERNATIVE 1-
A10_2 A-10A < 35.0	
CORSAIR NORTH MOA	CORSAIR N - ALTERNATIVE 1- A10_2
A-10A < 35.0	
LATN	LATN - EXISTING - C130_2
C-1300 < 35.0	
LATN	LATN - EXISTING - H60_2
UH60A < 35.0	
CORSAIR NORTH LOW MOA - 1000	CORSAIR N LOW - ALTERNATIVE 1-
A10_3 A-10A < 35.0	
LATN	LATN - EXISTING - A10_3
A-10A < 35.0	
CORSAIR NORTH LOW MOA - 1000	CORSAIR N LOW - ALTERNATIVE 1 -
H60_2 UH60A < 35.0	
CORSAIR NORTH MOA	CORSAIR N - ALTERNATIVE 1- A10_3
A-10A < 35.0	
CORSAIR NORTH LOW MOA - 1000	CORSAIR N LOW - ALTERNATIVE 1- F18
F-18A/C < 35.0	
LATN	LATN - EXISTING - C130_3
C-130J < 35.0	And and any series of the seri
CORSAIR NORTH LOW MOA - 1000	CORSAIR N LOW - ALTERNATIVE 1-
A29_2 T-6 < 35.0	15000
LATN	LATN - EXISTING - H60_3

```
UH60A
                 ₹ 35,0
    LATN
                                                 LATN - EXISTING - C130
      C-1303
                 < 35.0
    LATN
                                                 LATN - EXISTING - A10
      A-10A
                 < 35.0
    CORSAIR NORTH LOW MOA - 1000
                                                 CORSAIR N LOW - ALTERNATIVE 1 -
C130_2 C-130J
                   < 35.0
    CORSAIR NORTH MOA
                                                 CORSAIR N - ALTERNATIVE 1- A29_3
      T-6
                 < 35.0
    CORSAIR NORTH LOW MOA - 1000
                                                 CORSAIR N LOW - ALTERNATIVE 1 -
H60_3
        UH60A
                    < 35.0
    CORSAIR NORTH LOW NOA - 1000
                                                 CORSAIR N LOW - ALTERNATIVE 1-
        A-10A
                    < 35.0
    CORSAIR NORTH MOA
                                                 CORSAIR N - ALTERNATIVE 1- F18
      F-18A/C
                < 35.0
Total Level ......
                        36.7
                                    0.3
    Specific Point: CORSAIR S POI
    Top 20 contributors to this level:
                Sound Level
                     Airspace
                                             > Mission
       Aircraft
                    (dB)
                              HA(%)
    CORSAIR SOUTH LOW MOA - 1000
                                                 CORSAIR 5 LOW - ALTERNATIVE 1-
A10 2
         A-10A
                    < 35.0
    LATN
                                                 LATN - EXISTING - A10_2
      A-10A
                 < 35.0
    CORSAIR SOUTH MOA
                                                 CORSAIR 5 - ALTERNATIVE 1- A10_2
      A-10A
                 < 35.0
                                                 LATN - EXISTING - C130_2
    LATN
      C-130J
                 < 35.0
                                                 LATN - EXISTING - H60_2
    LATN
      UH60A
                 < 35.0
                                                 CORSAIR S LOW - ALTERNATIVE 1-
    CORSAIR SOUTH LOW MOA - 1000
A10 3
                    < 35.0
         A-10A
    CORSAIR SOUTH LOW MOA - 1000
                                                 CORSAIR S LOW - ALTERNATIVE 1-
A29 3
          T-6
                     < 35.0
    CORSAIR SOUTH LOW MOA - 1000
                                                 CORSAIR S LOW - ALTERNATIVE 1 -
H60_2
         UH60A
                    < 35.0
    LATN
                                                 LATN - EXISTING - A10_3
                 × 35.0
      A-10A
    CORSAIR SOUTH LOW MOA - 1000
                                                 CORSAIR 5 LOW - ALTERNATIVE 1- F18
                 ₹ 35.0
      F-18A/C
    CORSAIR SOUTH MOA
                                                 CORSAIR 5 - ALTERNATIVE 1- A10_3
      A-10A
                 < 35.0
```

```
CORSAIR SOUTH MOA
                                                  CORSAIR 5 - ALTERNATIVE 1- A29_3
       T-6
                  < 35.0
    LATN
                                                  LATN - EXISTING - C130_3
       C-1307
                  < 35.0
    LATN
                                                  LATN - EXISTING - H60_3
       UH6@A
                  < 35.0
    CORSAIR SOUTH LOW MOA - 1000
                                                 CORSAIR S LOW - ALTERNATIVE 1 -
C130 2
        C-130J
                    < 35.0
    LATN
                                                  LATN - EXISTING - C130
       C-1303
                  ₹ 35.0
    LATN
                                                  LATN - EXISTING - A10
       A-10A
                  ₹ 35.0
    CORSAIR SOUTH LOW MOA - 1000
                                                 CORSAIR S LOW - ALTERNATIVE 1-
         T-6
                     ₹ 35.0
    CORSAIR SOUTH LOW MOA - 1000
                                                 CORSAIR S LOW - ALTERNATIVE 1 -
H60 3
         UH60A
                     < 35.0
    CORSAIR SOUTH MOA
                                                  CORSAIR 5 - ALTERNATIVE 1- F18
       F-18A/C
                 < 35.0
Total Level ......
                                     0.3
                        37.4
    Specific Point: MOODY2N POI
    Top 20 contributors to this level:
                 Sound Level
                                               > Mission
                     Airspace
       Aircraft
                    (dB)
                               HA(%)
    MOODY 2 NORTH MOA - 100
                                                 MOODY 2N - ALTERNATIVE 1 - A10_2
       A-10A
                   40.2
                                0.4
    MOODY 2 NORTH MOA - 100
                                                  MOODY 2N - ALTERNATIVE 1 - H60 2
       UH60A
                   38.9
                                0.4
    MOODY 2 NORTH MOA - 100
                                                 MOODY 2N - ALTERNATIVE 1 - A29_3
       T-6
                   35.7
                                0.2
    MOODY 2 NORTH MOA - 100
                                                  MOODY 2N - ALTERNATIVE 1 - A10 3
```

MOODY 2N - ALTERNATIVE 1 - H60 3

MOODY 2N - ALTERNATIVE 1 - C130 2

MOODY 2N - ALTERNATIVE 1 - F18

MOODY 2N - ALTERNATIVE 1 - A10

HANG N - ALTERNATIVE 1 - A10_2

MOODY 2N - ALTERNATIVE 1 - C130_3

Appendix C C-105

A-10A

UH60A

C-130J

F-18A/C

HAWG NORTH MOA

A-10A

A-10A

< 35.0

₹ 35.0

₹ 35.0

₹ 35.0

< 35.0

< 35.0

MOODY 2 NORTH MOA - 100

C-130J < 35,0	
MOODY 2 NORTH MOA - 100	MOODY 2N - ALTERNATIVE 1 - H60
UH60A < 35.0	
MOODY 2 NORTH MOA - 100	MOODY 2N - ALTERNATIVE 1 - C130
C-1300 < 35.0	
MOODY 2 NORTH MOA - 100	MOODY 2N - ALTERNATIVE 1 - A29_2
T-6 < 35.0	
HAWG NORTH MOA	HAWG N - ALTERNATIVE 1 - A10_3
A-10A < 35.0	
HAWG NORTH MOA	HAWG N - ALTERNATIVE 1 - F18
F-18A/C < 35.0	
MOODY 2 NORTH MOA - 100	MOODY 2N - ALTERNATIVE 1 - A29
T-6 < 35.0	
HAWG NORTH MOA	HANG N - ALTERNATIVE 1 - A10
A-10A < 35.0	
R3008AB	R3008AB - EXISTING - A10_2
A-10A < 35.0	
R3008AB	R3008AB - EXISTING - F35
F-35A < 35.0	
R3008AB	R3008AB - EXISTING - A10_3
A-10A < 35.0	

0.8

Specific Point: MOODY2S POT Top 20 contributors to this level:

44.6

Total Level

14	Sound Level	l .	
<	Airspa	ace	> Mission
Aircraft	(dB)	HA(%)	
MOODY 2 SOUTH	MOA	the superior and a su	MOODY 2S - ALTERNATIVE 1 - A10_2
A-10A	36.9	0.3	
MOODY 2 SOUTH	MOA		MOODY 2S - ALTERNATIVE 1 - H60_2
UH60A	36.9	0.3	
MOODY 2 SOUTH	MOA		MOODY 2S - ALTERNATIVE 1 - A29_3
T-6	< 35.0		
MOODY 2 SOUTH	MOA		MOODY 2S - ALTERNATIVE 1 - A10 3
A-10A	< 35.0		10T-
MOODY 2 SOUTH	MOA		MOODY 2S - ALTERNATIVE 1 - C130_2
C-130J	₹ 35.0		Property and Administration of the Control of the C
MOODY 2 SOUTH	MOA		MOODY 2S - ALTERNATIVE 1 - H60_3
UH60A	< 35.0		The property of the second of
MOODY 2 SOUTH	MOA		MOODY 2S - ALTERNATIVE 1 - F18
F-18A/C	₹ 35.0		
HAWG SOUTH MO.	A		HANG S - ALTERNATIVE 1 - A10_2
A-10A	< 35.0		550

MOODY 2 SOUTH MOA

MOODY 2S - ALTERNATIVE 1 - A10

LATN - EXISTING - H60_2

```
A-10A
                  < 35.0
    MOODY 2 SOUTH MOA
                                                  MOODY 2S - ALTERNATIVE 1 - C130_3
       C-130J
                 < 35.0
    MOODY 2 SOUTH MOA
                                                  MOODY 25 - ALTERNATIVE 1 - H60
       UH60A
                 < 35.0
    HAWG SOUTH MOA
                                                  HAWG S - ALTERNATIVE 1 - A10_3
       A-10A
                  < 35.0
    MOODY 2 SOUTH MOA
                                                  MOODY 2S - ALTERNATIVE 1 - C130
       C-130J
                  ₹ 35.0
    MOODY 2 SOUTH MOA
                                                  MOODY 2S - ALTERNATIVE 1 - A29 2
       T-6
                  ₹ 35.0
    HAWG SOUTH MOA
                                                  HANG S - ALTERNATIVE 1 - F18
       F-18A/C
                 < 35.0
    MOODY 2 SOUTH MOA
                                                  MOODY 2S - ALTERNATIVE 1 - A29
       T-6
                  < 35.0
                                                  HANG 5 - ALTERNATIVE 1 - A10
    HAWG SOUTH MOA
       A-10A
                 < 35.0
    R3008AB
                                                  R3008AB - EXISTING - A10_2
       A-10A
                 < 35.0
    R3008AB
                                                  R3008AB - EXISTING - F35
       F-35A
                 < 35.0
    R3008AB
                                                  R3008AB - EXISTING - A10 3
       A-10A
                  < 35.0
Total Level .....
                        42.2
                                    0.6
    Specific Point: MUSTANG POI
    Top 20 contributors to this level:
                 Sound Level
                     Airspace
                                              > Mission
       Aircraft
                    (dB)
                               HA(%)
    MUSTANG MOA
                                                  MUSTANG - ALTERNATIVE 1 - F35
       F-35A
                   38.6
                                0.3
    MUSTANG LOW MOA - 1000
                                                 MUSTANG LOW MOA - ALTERNATIVE 1-
A10 2
        A-10A
                   < 35.0
    LATN
                                                  LATN - EXISTING - A10 2
       A-10A
                 ₹ 35.0
                                                 MUSTANG - ALTERNATIVE 1 - A10_2
    MUSTANG MOA
       A-10A
                  < 35.0
    LATN
                                                  LATN - EXISTING - C130_2
       C-1303
                 < 35.0
    MUSTANG LOW MOA - 1000
                                                  MUSTANG LOW MOA - ALTERNATIVE 1-
A10_3 A-10A
                   < 35.0
```

Appendix C C-107

LATN

UH60A < 35.0	
MUSTANG LOW MOA - 1000	MUSTANG LOW MOA - ALTERNATIVE 1
HB0_2 UHB0A (35.0	
LATN	LATN - EXISTING - A10_3
A-10A < 35.0	
MUSTANG MOA	MUSTANG - ALTERNATIVE 1 - A10_3
A-10A < 35.0	
MUSTANG LOW MOA - 1000	MUSTANG LOW MOA - ALTERNATIVE 1-
F18 F-18A/C < 35.0	
LATN	LATN - EXISTING - C130_3
C-130J < 35.0	
MUSTANG LOW MOA - 1000	MUSTANG LOW MOA - ALTERNATIVE 1-
A29_3 T-6 < 35.0	
MUSTANG LOW MOA - 1000	MUSTANG LOW MOA - ALTERNATIVE 1 -
C130_2 C-130J < 35.0	
MUSTANG MOA	MUSTANG - ALTERNATIVE 1 - F18
F-18A/C < 35.0	V many three search and the search
LATN	LATN - EXISTING - H60_3
UH60A < 35.0	
MUSTANG LOW MOA - 1000	MUSTANG LOW MOA - ALTERNATIVE 1 -
H60_3 UH60A < 35.0	\$1000 100000000000 0 0 0 0 0 0 0 0 0 0 0
LATN	LATN - EXISTING - C130
C-1303 < 35.0	
LATN	LATN - EXISTING - A10
A-10A < 35.0	PUSTING VALUE AND AUTOMOTIVE A
MUSTANG LOW MOA - 1000	MUSTANG LOW MOA - ALTERNATIVE 1-
A10 A-10A < 35.0	
Total Level 41.2 0.5	5

Specific Point: R3008A POI Top 20 contributors to this level:

	Sound Level	1	
<	Airspa	ace	> Mission
Aircraft	(dB)	HA(%)	
R3008AB			R3008AB - EXISTING - A10 2
A-10A	56.2	3.9	
R3008AB			R3008AB - EXISTING - F35
F-35A	49.5	1.5	
R3008AB			R3008AB - EXISTING - A10_3
A-10A	49.2	1.5	
R3008AB			R3008AB - EXISTING - H60_2
UH60A	47.9	1.2	
R3008AB			R3008AB - EXISTING - C130_2
C-1303	45.7	0.9	

R3008AB			R3008AB - EXISTING - A10
A-10A	42,7	0.6	
R3008AB			R3008AB - EXISTING - H60_3
UH60A	39.6	0.4	-
R3008AB			R3008AB - EXISTING - A29_3
T-6	38.5	0.3	
R3008AB			R3008AB - EXISTING - C130_3
C-1303	38.3	0.3	
R3008AB			R3008AB - EXISTING - C130
C-130J	36.1	0.2	
R3008AB			R3008AB - EXISTING - H60
UH60A	< 35.0		
LATN			LATN - EXISTING - A10_2
A-10A	< 35.0		
R3008AB			R3008AB - EXISTING - A29_2
T-6	< 35.0		
LATN			LATN - EXISTING - C130_2
C-130J	< 35.0		
LATN			LATN - EXISTING - H60_2
UH60A	< 35.0		
LATN			LATN - EXISTING - A10_3
A-10A	< 35.0		
SABRE MOA			SABRE - EXISTING - F35
F-35A	< 35.0		
LATN			LATN - EXISTING - C130_3
C-130J	< 35.0		
LATN			LATN - EXISTING - H60_3
UH60A	< 35.0		
LATN			LATN - EXISTING - C130
C-130J	₹ 35.0		

Specific Point: R3008B POI Top 20 contributors to this level:

Total Level 58.7

	Sound Leve	1		
<	Airsp.	ace	>	Mission
Aircraft	(dB)	HA(%)		
R3008AB				R3008AB - EXISTING - A10_2
A-10A	57.1	4.4		
R3008AB				R3008AB - EXISTING - F35
F-35A	50.5	1.8		
R3008AB				R3008AB - EXISTING - A10_3
A-10A	50.3	1.7		
R3008AB				R3008AB - EXISTING - H60_2

5.4

UH60A		49.1	1.5	
R3008AB		22293	02/2029	R3008AB - EXISTING - C130_2
C-1303		47.3	1.1	
R3008AB				R3008AB - EXISTING - A10
A-10A		43.4	0.7	
R3008AB				R3008AB - EXISTING - H60_3
UH60A		40.8	0.5	
R3008AB				R3008AB - EXISTING - A29_3
T-6		40.0	0.4	
R3008AB				R3008AB - EXISTING - C130_3
C-130J		39.9	0.4	
R3008AB				R3008AB - EXISTING - C130
C-130J		37.7	0.3	
R3008AB				R3008AB - EXISTING - H60
UH60A	<	35.0		
R3008AB				R3008AB - EXISTING - A29 2
T-6		35.0		- -
HANG SOUTH	MOA			HANG S - ALTERNATIVE 1 - A10
A-10A	<	35.0		
HANG NORTH	MOA			HAWG N - ALTERNATIVE 1 - A10
A-10A	<	35.0		
R3008AB				R3008AB - EXISTING - A29
T-6	<	35.0		
HANG SOUTH				HAWG S - ALTERNATIVE 1 - A10
A-10A		35.0		
HANG NORTH		200.000		HAWG N - ALTERNATIVE 1 - A10
A-10A		35.0		
HANG SOUTH				HAWG S - ALTERNATIVE 1 - F18
F-18A/C		35.0		
HANG NORTH				HANG N - ALTERNATIVE 1 - F18
F-18A/C		35.0		The state of the s
HAWG SOUTH		22.0		HAWG S - ALTERNATIVE 1 - A10
A-10A		35 B		MANO S ACTEMBRITY I - ALO
		22.0		

Specific Point: R3008C POI Top 20 contributors to this level:

```
Sound Level
                 Airspace
                                          > Mission
   Aircraft
                (dB)
                           HA(%)
GRAND BAY MOA AND R3008C
                                             R3008C - ALTERNATIVE 1 - A10_2
   A-10A
               49.0
                           1.5
GRAND BAY MOA AND R3008C
                                             R3008C - ALTERNATIVE 1 - F35
   F-35A
               40.2
                            0.4
```

```
GRAND BAY MOA AND R3008C
                                                  R3008C - ALTERNATIVE 1 - A10_3
       A-10A
                                0.4
    GRAND BAY MOA AND R3008C
                                                  R3008C - ALTERNATIVE 1 - H60_2
       UH6@A
                    39.7
                                0.4
    GRAND BAY MOA AND R3008C
                                                  R3008C - ALTERNATIVE 1 - C130_2
       C-130J
                    37.9
                                0.3
    GRAND BAY MOA AND R3008C
                                                  R3008C - ALTERNATIVE 1 - A10
       A-10A
                    35.3
                                0.2
    GRAND BAY MOA AND R3008C
                                                  R3008C - ALTERNATIVE 1 - H60_3
       UH60A
                  ₹ 35.0
    GRAND BAY MOA AND R3008C
                                                  R3008C - ALTERNATIVE 1 - C130 3
       C-130J
                  ₹ 35.0
    GRAND BAY MOA AND R3008C
                                                  R3008C - ALTERNATIVE 1 - A29_3
       T-6
                  ₹ 35.0
    GRAND BAY MOA AND R3008C
                                                  R3008C - ALTERNATIVE 1 - H60
       UH60A
                  < 35.0
    GRAND BAY MOA AND R3008C
                                                  R3008C - ALTERNATIVE 1 - C130
       C-130J
                  ₹ 35.0
                                                  HAWG 5 - ALTERNATIVE 1 - A10_2
    HAWG SOUTH MOA
       A-10A
                  < 35.0
    GRAND BAY MOA AND R3008C
                                                  R3008C - ALTERNATIVE 1 - A29_2
       T-6
                  < 35.0
    HAWG SOUTH MOA
                                                  HANG S - ALTERNATIVE 1 - A10 3
       A-10A
                  < 35.0
    HANG SOUTH MOA
                                                  HANG S - ALTERNATIVE 1 - F18
       F-18A/C
                 < 35.0
    GRAND BAY MOA AND R3008C
                                                  R3008C - ALTERNATIVE 1 - A29
       T-6
                  ₹ 35.0
    HANG SOUTH MOA
                                                  HANG S - ALTERNATIVE 1 - A10
       A-10A
                 ₹ 35.0
    R3008AB
                                                  R3008AB - EXISTING - A10_2
       A-10A
                  < 35.0
    R3008AB
                                                  R3008AB - EXISTING - F35
       F-35A
                  < 35.0
                                                  R3008AB - EXISTING - A10_3
    R3008AB
       A-10A
                  < 35.0
Total Level ......
                                     1.9
                         51.0
    Specific Point: SABRE POI
    Top 20 contributors to this level:
                 Sound Level
                      Airspace
                                               > Mission
       Aircraft
                    (dB)
                               HA(%)
    LATN
                                                  LATN - EXISTING - A10_2
```

A-10A	₹ 35,0	
LATN		LATN - EXISTING - C130_2
C-1303	< 35.0	
LATN		LATN - EXISTING - H60_2
UH60A	< 35.0	
LATN		LATN - EXISTING - A10_3
A-10A	< 35.0	
SABRE MOA		SABRE - EXISTING - F35
F-35A	< 35.0	
LATN		LATN - EXISTING - C130_3
C-130J	< 35.0	
LATN		LATN - EXISTING - H60_3
UH60A	< 35.0	
LATN		LATN - EXISTING - C130
C-130J	< 35.0	
LATN		LATN - EXISTING - A10
A-10A	< 35.0	
SABRE MOA		SABRE - EXISTING - F18
F-18A/C	< 35.0	
LATN		LATN - EXISTING - H60
UH60A	< 35.0	
R3008AB		R3008AB - EXISTING - A10 2
A-10A	< 35.0	
R3008AB		R3008AB - EXISTING - F35
F-35A	< 35.0	
R3008AB		R3008AB - EXISTING - A10 3
A-10A	< 35.0	
R3008AB		R3008AB - EXISTING - H60 2
UH60A	< 35.0	
GRAND BAY MOA		R3008C - ALTERNATIVE 1 - A10 2
A-10A	< 35.0	77.9°
R3008AB		R3008AB - EXISTING - C130 2
C-130J	₹ 35,0	
R3008AB		R3008AB - EXISTING - A10
A-10A	< 35.0	
R3008AB	1,000	R3008AB - EXISTING - H60 3
	< 35.0	
THUD LOW MOA	1078 E-2015 E-201	THUD - ALTERNATIVE 1 - F35
	< 35.0	
35 55 55 5	ROW CONTROL CO	

Total Level < 35.0

Specific Point: THUD POI Top 20 contributors to this level:

Sound Level

<	Airsp	ace	> Mission
Aircraft	(dB)	HA(%)	
THUD LOW MOA			THUD - ALTERNATIVE 1 - F35
F-35A	40.4	0.4	
LATN			LATN - EXISTING - A10_2
A-10A	< 35.0		
THUD LOW MOA			THUD - ALTERNATIVE 1 - A10_2
A-10A	< 35.0		
LATN			LATN - EXISTING - C130_2
C-130J	< 35.0		
LATN			LATN - EXISTING - H60_2
UH60A	< 35.0		
LATN			LATN - EXISTING - A10_3
A-10A	₹ 35.0		
THUD LOW MOA			THUD - ALTERNATIVE 1 - A10_3
A-10A	< 35.0		
LATN			LATN - EXISTING - C130_3
C-130J	< 35.0		
THUD LOW MOA			THUD - ALTERNATIVE 1 - F18
F-18A/C	< 35.0		
LATN			LATN - EXISTING - H60_3
UH60A	< 35.0		
LATN			LATN - EXISTING - C130
C-1303	< 35.0		
LATN			LATN - EXISTING - A10
A-10A	< 35.0		
THUD LOW NOA			THUD - ALTERNATIVE 1 - A10
A-10A	₹ 35.0		
LATN			LATN - EXISTING - H60
UH60A	₹ 35.0		
R3008AB			R3008AB - EXISTING - A10_2
A-10A	< 35.0		
R3008AB			R3008AB - EXISTING - F35
F-35A	< 35.0		
R3008AB			R3008AB - EXISTING - A10_3
A-10A	< 35.0		
R3008AB			R3008AB - EXISTING - H60_2
UH60A	< 35.0		
GRAND BAY MOA	AND R3008	c	R3008C - ALTERNATIVE 1 - A10_2
A-10A	< 35.0		
R3008AB			R3008AB - EXISTING - C130_2
C-130J	< 35.0		

Specific Point: WARHAWK POI Top 20 contributors to this level:

41.4

0.5

Total Level

		Sou	ınd Level				
	<		Airspace		>	Mission	
	Aircraft		(dB)	HA(%)			
	WARHAWK MOA					WARHAWK	- ALTERNATIVE 1 - F35
	F-35A		37.0	0.3			
	WARHAWK LOW					WARHAWK	LOW MOA - ALTERNATIVE 1
A10_	_2 A-10A		< 35.0				
	WARHAWK MOA					WARHAWK	- ALTERNATIVE 1 - A10_2
	A-10A		35.0				
	WARHAWK LOW					WARHAWK	LOW MOA - ALTERNATIVE 1
A10_			< 35.0				
	WARHAWK MOA					WARHAWK	- ALTERNATIVE 1 - A10_3
			35.0				
	WARHAWK LOW					WARHAWK	LOW MOA - ALTERNATIVE 1
F18		-	< 35.0				
	WARHAWK MOA					WARHAWK	- ALTERNATIVE 1 - F18
	F-18A/C	<	35.0				
	WARHAWK LOW					WARHAWK	LOW MOA - ALTERNATIVE 1
C136)_2 C-130J		35.0				
	WARHAWK LOW					WARHAWK	LOW MOA - ALTERNATIVE 1
H60			35.0				
	WARHAWK LOW					WARHAWK	LOW MOA - ALTERNATIVE 1
H60			35.0				
	WARHAWK LOW					WARHAUK	LOW MOA - ALTERNATIVE 1
A29			< 35.0				
	WARHAWK LOW					WARHAWK	LOW MOA - ALTERNATIVE 1
A10			< 35.0				
	WARHAWK LOW					WARHAWK	LOW MOA - ALTERNATIVE 1
C136)_3 C-130J		35.0				
	WARHAWK LOW					WARHAWK	LOW MOA - ALTERNATIVE 1
H60	Lateral Philippin Colors		35.0				
	WARHAWK LOW					WARHAWK	LOW MOA - ALTERNATIVE 1
A29_			< 35.0				
	WARHAWK MOA					WARHAWK	- ALTERNATIVE 1 - A10
			35.0				
	WARHAWK LOW					WARHAWK	LOW MOA - ALTERNATIVE 1
C136			35.0				
	WARHAWK LOW					WARHAWK	LOW MOA - ALTERNATIVE 1
A29			< 35.0				
	R3008AB					R3008AB	- EXISTING - A10_2
	A-10A		35.0				
	R3008AB					R3008AB	- EXISTING - F35
	F-35A	<	35.0				

0.3

Appendix C C-114

Total Level 38.7

<Run Log>

Date: 7/24/2020 Start Time: 10:53: 4
Stop Time: 11: 9:18
Total Running Time: 16 minutes and 15 seconds.

C-115 Appendix C

```
***** MOA RANGE NOISEMAP *****
        Version 3.0
Release Date
                 2/7/2013
```

CASE INFORMATION

Case Name: Moody AFB SUA - Alternative 2 - 2000 ft Floor Scenario

Site Name: Moody SUA Complex

SETUP PARAMETERS

```
Number of MOAs and Ranges = 28
                                         Number of tracks = 0
Lower Left Corner of Grid in feet (X Y pair) = -300000., -325000.
Upper Right Corner of Grid in feet (X Y pair) = 300000., 325000.
Grid spacing = 2500. feet Number of events above an SEL of 65.0 dB
Temperature = 59 F
                            Humidity = 70
                                                  Flying days per month = 30
```

MOA SPECIFICATIONS

```
MOA name CORSAIR NORTH LOW MOA - 1000
    Lat
              Long
    (deg)
              (deg)
  31.50029 -84.10001
 31.37945
           -84.03334
  31.30028
            -84.01945
  31.00000
           -83.88306
 31.00000
            -83.46695
 31.33334
            -83,56390
  31.50029
           -84.10001
Floor = 1000 feet AGL
                            Ceiling =
                                         8000 feet AGL
MOA name CORSAIR NORTH LOW MOA - 2000
    Lat
              Long
    (deg)
              (deg)
  31.50029
           -84.10001
 31.37945
           -84.03334
 31.30028
           -84.01945
 31.00000
            83.88306
  31.00000
            -83.46695
  31.33334
            -83.56390
 31.50029
            -84.10001
          2000 feet AGL
Floor =
                           Ceiling =
                                        8000 feet AGL
MOA name CORSAIR NORTH LOW MOA - 4000
    Lat
              Long
    (deg)
              (deg)
  31.50029
            -84,10001
  31.37945
            -84.03334
 31.30028
```

C-116 Appendix C

-84.01945

```
31.00000
            -83,88306
  31.00000 -83.46695
  31.33334 -83.56390
  31.50029
           -84,10001
Floor =
          4000 feet AGL
                            Ceiling =
                                        8000 feet AGL
MOA name CORSAIR NORTH MOA
              Long
    Lat
    (deg)
               (deg)
  31.50029
            -84.10001
 31.37945
            -84.03334
  31.30028
            -84.01945
  31.00000
            -83.88306
 31.00000
            -83,46695
            -83.56390
 31.33334
  31.50029 -84.10001
                            Ceiling - 18000 feet AGL
Floor -
          8000 feet AGL
MOA name CORSAIR SOUTH LOW MOA - 1000
              Long
    (deg)
               (deg)
 31.00000
            83.88306
 31.00000
           -83.46695
 30.61666
            -83.35555
 30.63362
           -83.71666
  31.00000
           -83.88306
                                         8000 feet AGL
Floor =
          1000 feet AGL
                            Ceiling =
MOA name CORSAIR SOUTH LOW MOA - 2000
    Lat
              Long
    (deg)
              (deg)
 31.00000
            -83.88306
  31.00000
            -83,46695
  30.61666
            -83.35555
 30.63362
            -83.71666
            -83,88306
 31.00000
Floor =
                            Ceiling =
                                         8000 feet AGL
          2000 feet AGL
MOA name CORSAIR SOUTH LOW MOA - 4000
              Long
    Lat
    (deg)
              (deg)
  31.00000
            -83.88306
  31.00000
           -83.46695
  30.61666
           -83,35555
  30.63362
            -83.71666
  31.00000
           -83,88306
Floor -
          4000 feet AGL
                            Ceiling - 8000 feet AGL
MOA name CORSAIR SOUTH MOA
     Lat
              Long
```

```
(deg)
               (deg)
  31.00000
             -83.88306
  31.00000
             -83,46695
  30.61666
             -83.35555
  30.63362
             -83.71666
  31.00000
             -83,88306
                             Ceiling = 18000 feet AGL
Floor =
           8000 feet AGL
MOA name GRAND BAY MOA AND R3008C
     Lat
               Long
               (deg)
    (deg)
  31.06694
             -83.01666
  30.85027
             -83.01666
  30.85027
             -83.13333
  30.89194
             -83.14999
  30.90861
             -83,10000
  31.02527
             -83,09999
  31.03361
             -83,14999
  31.06694
             -83.13333
  31.06694
             -83.01666
            100 feet AGL
                             Ceiling -
                                          8000 feet AGL
Floor -
MOA name HANG NORTH MOA
     Lat
               Long
    (deg)
               (deg)
  31.38306
             -83.16111
  30.95028
             -83.14139
  30.95028
             -82.64999
  31.21695
             -82,64999
  31.31140
            -82.74305
  31.38306
            -83.16111
Floor -
           8000 feet AGL
                             Ceiling -
                                         18000 feet AGL
MOA name HAWG SOUTH MOA
     Lat
               Long
    (deg)
               (deg)
  30.95028
             -83.14139
  30.60583
            -83.12556
  30.58361
             -82.64972
  30.95028
             -82.64999
  30.95028
            -83.14139
Floor =
           8000 feet AGL
                             Ceiling = 18000 feet AGL
MOA name LATN
     Lat
               Long
    (deg)
               (deg)
  32.06279
             -83.90001
  31.50029
             -84,10001
  30.63362
             -83,71666
  30.60583
             -83.12556
```

```
31.38306
            -83,16111
  32.06279
           -83,48334
  32.06279 -83.90001
           100 feet AGL
                            Ceiling -
                                         8000 feet AGL
Floor -
MOA name MOODY 2 NORTH MOA
     Lat
              Long
    (deg)
               (deg)
  30.95028
            -83.01666
  30.95028
            -82.64999
  31.02667
            -82.64999
  31.23362
            -82.81666
  31.30028
            -82.85000
  31.35028
            -83.01666
  30.95028
            -83.01666
            500 feet AGL
                            Ceiling =
                                         8000 feet AGL
MOA name MOODY 2 NORTH MOA - 100
     Lat
              Long
    (deg)
               (deg)
  30.95028
           -83.01666
  30.95028
            82.64999
  31.02667
            -82.64999
  31.23362
            -82.81666
  31.30028
            -82.85000
  31.35028
            -83.01666
  30.95028
            -83.01666
Floor =
            100 feet AGL
                            Ceiling =
                                         8000 feet AGL
MOA name MOODY 2 SOUTH MOA
     Lat
              Long
    (deg)
               (deg)
  30.95028
            -83,01666
  30.60305
            -83.01666
  30.58361
             -82.64999
  30.95028
            -82,64999
  30.95028
            -83.01666
                            Ceiling =
           100 feet AGL
                                         8000 feet AGL
MOA name MUSTANG LOW MOA - 1000
     Lat
              Long
    (deg)
               (deg)
  32.07196
            -83.59445
  31.56834
            -83.63195
  31.49445
            -83.38334
  31.97196
            -83,39389
  32.06279
            -83.48334
  32.07196
            -83,59445
                            Ceiling -
                                         8000 feet AGL
Floor -
          1000 feet AGL
```

```
MOA name MUSTANG LOW MOA - 2000
               Long
     Lat
    (deg)
               (deg)
             -83.59445
  32.07196
  31.56834
             -83.63195
  31.49445
             -83.38334
  31.97196
             -83.39389
  32.06279
             -83.48334
  32.07196
             -83.59445
Floor =
           2000 feet AGL
                             Ceiling =
                                          8000 feet AGL
MOA name MUSTANG LOW MOA - 4000
     Lat
               Long
    (deg)
               (deg)
  32.07196
             -83.59445
  31.56834
            -83,63195
  31.49445
             -83.38334
  31.97196
             -83,39389
  32.06279
             -83,48334
  32.07196
             -83.59445
          4000 feet AGL
                             Ceiling - 8000 feet AGL
Floor -
MOA name MUSTANG MOA
     Lat
    (deg)
               (deg)
  32.07196
             -83.59445
  31.56834
            -83.63195
  31.49445
             -83.38334
            -83,39389
  31.97196
  32.06279
            -83.48334
  32.07196
            -83,59445
Floor -
           8000 feet AGL
                             Ceiling - 18000 feet AGL
MOA name R3008AB
     Lat
               Long
    (deg)
               (deg)
  30.89194
             -83.14999
  30.90861
            -83.10000
  31.02527
             -83.09999
  31.03361
             -83.14999
  30.98694
             -83.16669
  30.95997
             -83.18475
  30.94738
            -83.16674
  30.89194
            -83,14999
Floor =
            100 feet AGL
                             Ceiling =
                                          8000 feet AGL
MOA name R3008C
     Lat
               Long
    (deg)
               (deg)
  31.06694
             -83.01666
```

```
30.85027
             -83,01666
  30.85027
            -83,13333
  30.89194
            -83.14999
  30.90861
             -83,10000
  31.02527
             -83.09999
  31.03361
             -83.14999
 31.06694
             -83.13333
 31.06694
            -83.01666
Floor =
            500 feet AGL
                             Ceiling =
                                          8000 feet AGL
MOA name SABRE MOA
    Lat
               Long
    (deg)
               (deg)
  31.68751
             -84.03334
 31.50029
            -84.10001
 31.33334
            -83,56390
 30.61666
            -83.35555
  30,60583
            -83,12556
 31.38306
            -83.16111
 31.49445
             83.38334
 31.68751
            -84.03334
Floor =
           8000 feet AGL
                            Ceiling = 18000 feet AGL
MOA name THUD LOW MOA
    Lat
              Long
    (deg)
               (deg)
  32.07196
            -83.59445
 32.08363
            -83.73751
 32.06279
            -83.90001
 31.68751
            -84.03334
 31.56834
            -83.63195
  32.07196
            -83.59445
           4000 feet AGL
Floor =
                            Ceiling =
                                         8000 feet AGL
MOA name THUD MOA
    Lat
               Long
    (deg)
               (deg)
 32.07196
            -83.59445
 32.08363
            -83.73751
 32.06279
            -83.90001
  31.68751
             -84.03334
 31.56834
             -83.63195
            -83.59445
  32.07196
Floor =
           8000 feet AGL
                             Ceiling = 18000 feet AGL
MOA name WARHAWK LOW MOA - 1000
    Lat
               Long
    (deg)
               (deg)
  31.97196
             -83.39389
 31.49445
            -83.38334
```

```
31.38306 -83.16111
  31.31140
           -82,74305
  31.97196 -83.39389
Floor - 1000 feet AGL
                            Ceiling -
                                        8000 feet AGL
MOA name WARHAWK LOW MOA - 2000
    Lat
              Long
    (deg)
              (deg)
  31.97196
            -83,39389
 31.49445
            -83.38334
 31.38306
            -83.16111
  31.31140
            -82.74305
  31.97196
            -83.39389
Floor = 2000 feet AGL
                            Ceiling =
                                        8000 feet AGL
MOA name WARHAWK LOW MOA - 4000
    Lat
              Long
    (deg)
              (deg)
 31.97196
            -83,39389
  31.49445
            -83.38334
 31.38306
            -83.16111
 31.31140
            82.74305
  31.97196
            -83.39389
Floor =
          4000 feet AGL
                            Ceiling =
                                       8000 feet AGL
MOA name WARHAWK MOA
    Lat
    (deg)
              (deg)
  31.97196
            -83,39389
  31.49445
           -83.38334
 31.38306
           -83,16111
 31.31140
           -82.74305
  31.97196 -83.39389
Floor - 8000 feet AGL
                            Ceiling - 18000 feet AGL
                 SPECIFIC POINT SPECIFICATION
Number of Specific points = 11
 Latitude
            Longitude
                           Name
  31.21328
            -83.74600
                          CORSAIR N POI
  30.81517
            -83.60754
                          CORSAIR 5 POI
 31.10161
            -82.86792
                          MOODY2N POI
  30.76693
           -82.84566
                          MOODY25 POI
            -83,49074
  31.74683
                          MUSTANG POI
  30.95783
            -83.16461
                          R3008A POI
  30.95604
            -83.12070
                          R3008B POI
  30.94930
            -83.05738
                          R3008C POI
  31.32796
            -83,38621
                          SABRE POI
  31.85989
            -83.76024
                          THUD POI
 31.58464
            -83.20150
                          WARHAWK POI
```

```
MISSION DATA
Mission name - CORSAIR N - ALTERNATIVE 2- A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                       86.0
          Altitude Distribution
                Upper Alt
    Lower Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
     8000
                 23000
                             100.0
Mission name = CORSAIR N - ALTERNATIVE 2- A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                       93.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
     8000
                 23000
                             100.0
Mission name = CORSAIR N - ALTERNATIVE 2- A10_3
Aircraft code -FM0090102 Speed - 350 kias Power -
                                                       97.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
                (feet AGL)
   (feet AGL)
                            Utilization
     8000
                 23000
                             100.0
Mission name = CORSAIR N - ALTERNATIVE 2- A29
Aircraft code =FM0870100 Speed = 120 kias Power =
                                                       30.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
     8000
                 23000
                             100.0
Mission name - CORSAIR N - ALTERNATIVE 2- A29_2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                       55.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
                (feet AGL)
   (feet AGL)
                            Utilization
     8000
                 23000
                             100.0
Mission name = CORSAIR N - ALTERNATIVE 2- A29_3
Aircraft code =FM0870102 Speed = 220 kias Power = 100.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
     8000
                 23000
                             100.0
```

```
Mission name - CORSAIR N - ALTERNATIVE 2- F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                         80.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name = CORSAIR N LOW - ALTERNATIVE 2- A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                         86.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = CORSAIR N LOW - ALTERNATIVE 2- A10_2
Aircraft code -FM0090101 Speed - 250 kias Power -
                                                        93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = CORSAIR N LOW - ALTERNATIVE 2- A10 3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                        97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = CORSAIR N LOW - ALTERNATIVE 2 - C130
Aircraft code =FM0290400 Speed = 150 kias Power =
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               18.2
      3000
                   5000
                               27.3
      5000
                   8000
                               54.5
```

Mission name = CORSAIR N LOW - ALTERNATIVE 2 - C130_2

```
Aircraft code =FM0290401 Speed = 220 kias Power = 1800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               18.2
      3000
                   5000
                               27.3
      5000
                   8000
                               54.5
Mission name = CORSAIR N LOW - ALTERNATIVE 2 - C130_3
Aircraft code =FM0290402 Speed = 350 kias Power = 4700.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               18.2
      3000
                   5000
                               27.3
      5000
                   8000
                               54.5
Mission name = CORSAIR N LOW - ALTERNATIVE 2 - H60
Aircraft code -FM6210100 Speed -
                                   70 kias Power -
                                                         0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               95.0
      3000
                   7999
Mission name = CORSAIR N LOW - ALTERNATIVE 2 - H60_2
Aircraft code =FM6210101 Speed = 100 kias Power =
                                                         0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               95.0
      3000
                   7999
                                5.0
Mission name = CORSAIR N LOW - ALTERNATIVE 2 - H60_3
Aircraft code =FM6210102 Speed = 130 kias Power =
                                                         0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               95.0
      3000
                   7999
                                5.0
Mission name - CORSAIR N LOW - ALTERNATIVE 2- A29
Aircraft code =FM0870100 Speed = 120 kias Power =
                                                        30.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
```

```
Utilization
   (feet AGL)
                (feet AGL)
      2000
                   3000
                               10.0
                               30.0
      3000
                   5000
      5000
                   8000
                               60.0
Mission name = CORSAIR N LOW - ALTERNATIVE 2- A29_2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                         55.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name - CORSAIR N LOW - ALTERNATIVE 2- A29_3
Aircraft code =FM0870102 Speed = 220 kias Power =
                                                       100.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = CORSAIR N LOW - ALTERNATIVE 2- F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                         80.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               10.0
      3000
                   5000
                               10.0
      5000
                   8000
                               80.0
Mission name = CORSAIR S - ALTERNATIVE 2- A10
Aircraft code =FM0090100 Speed = 180 kias Power =
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name = CORSAIR S - ALTERNATIVE 2- A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                         93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
```

```
Mission name = CORSAIR S - ALTERNATIVE 2- A10_3
Aircraft code -FM0090102 Speed - 350 kias Power -
                                                          97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
      8000
                  23000
                               100.0
Mission name = CORSAIR S - ALTERNATIVE 2- A29
Aircraft code =FM0870100 Speed = 120 kias Power =
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
      8000
                  23000
                               100.0
Mission name - CORSAIR 5 - ALTERNATIVE 2- A29_2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                          55.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
      8000
                   23000
                               100.0
Mission name = CORSAIR S - ALTERNATIVE 2- A29_3
Aircraft code =FM0870102 Speed = 220 kias Power = 100.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
      8000
                   23000
                               100.0
Mission name = CORSAIR S - ALTERNATIVE 2- F18
Aircraft code -FM0450100 Speed - 350 kias Power -
                                                          80.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
                   23000
                               100.0
Mission name = CORSAIR S LOW - ALTERNATIVE 2- A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                          86.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
      2000
                    3000
                                10.0
      3000
                    5000
                                30.0
      5000
                   8000
                                60.0
```

```
Mission name = CORSAIR S LOW - ALTERNATIVE 2- A10_2
Aircraft code -FM0090101 Speed - 250 kias Power -
                                                        93.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = CORSAIR S LOW - ALTERNATIVE 2- A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                        97.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
                             Utilization
   (feet AGL)
                (feet AGL)
      2000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = CORSAIR S LOW - ALTERNATIVE 2 - C130
Aircraft code =FM0290400 Speed = 150 kias Power = 800.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               18.2
      3000
                   5000
                               27.3
      5000
                   8000
                               54.5
Mission name = CORSAIR S LOW - ALTERNATIVE 2 - C130_2
Aircraft code -FM0290401 Speed - 220 kias Power - 1800.0
           Altitude Distribution
                Upper Alt
    Lower Alt
                              Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               18.2
      3000
                   5000
                               27.3
      5000
                   8000
                               54.5
Mission name = CORSAIR S LOW - ALTERNATIVE 2 - C130 3
Aircraft code =FM0290402 Speed = 250 kias Power = 4700.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               18.2
      3000
                   5000
                               27.3
      5000
                   8000
                               54.5
```

```
Mission name = CORSAIR S LOW - ALTERNATIVE 2 - H60
Aircraft code -FM6210100 Speed -
                                    70 kias Power -
                                                          0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               95.0
      3000
                   8000
                                5.0
Mission name = CORSAIR S LOW - ALTERNATIVE 2 - H60 2
Aircraft code =FM6210101 Speed = 100 kias Power =
                                                          0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               95.0
      3000
                   8000
                                5.0
Mission name - CORSAIR S LOW - ALTERNATIVE 2 - H60_3
Aircraft code =FM6210102 Speed = 130 kias Power =
                                                          0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               95.0
      3000
                   8000
                                5.0
Mission name = CORSAIR S LOW - ALTERNATIVE 2- A29
Aircraft code =FM0870100 Speed = 120 kias Power =
                                                         30.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = CORSAIR S LOW - ALTERNATIVE 2- A29 2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                         55.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
```

Mission name = CORSAIR S LOW - ALTERNATIVE 2- A29_3

```
Aircraft code =FM0870102 Speed = 220 kias Power = 100.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = CORSAIR S LOW - ALTERNATIVE 2- F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                        80.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               10.0
      3000
                   5000
                               10.0
      5000
                   8000
                               80.0
Mission name = HAWG N - ALTERNATIVE 2 - A10
Aircraft code -FM0090100 Speed - 180 kias Power -
                                                        86.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
                (feet AGL)
   (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name = HAWG N - ALTERNATIVE 2 - A10 2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                        93.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name - HAWG N - ALTERNATIVE 2 - A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                        97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
                (feet AGL)
   (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name = HAWG N - ALTERNATIVE 2 - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                        80.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
```

```
Mission name - HAWG S - ALTERNATIVE 2 - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                        86.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name = HAWG S - ALTERNATIVE 2 - A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                        93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
                (feet AGL)
   (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name = HAWG S - ALTERNATIVE 2 - A10_3
Aircraft code -FM0090102 Speed - 350 kias Power -
                                                        97.0
           Altitude Distribution
   Lower Alt
                Upper Alt
                               Percent
                (feet AGL)
   (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name = HAWG S - ALTERNATIVE 2 - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                        80.0
           Altitude Distribution
                Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name - LATN - EXISTING - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                        86.0
           Altitude Distribution
                Upper Alt
    Lower Alt
                              Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = LATN - EXISTING - A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                        93.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                5.0
```

```
1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name - LATN - EXISTING - A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                        97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
                   1000
       100
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name - LATN - EXISTING - C130
Aircraft code =FM0290400 Speed = 150 kias Power =
                                                        800.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                             Utilization
                (feet AGL)
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
                               30.0
      3000
                   5000
      5000
                   8000
                               50.0
Mission name = LATN - EXISTING - C130_2
Aircraft code =FM0290401 Speed = 220 kias Power = 1800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = LATN - EXISTING - C130_3
Aircraft code =FM0290402 Speed = 250 kias Power = 4700.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                               15.0
                   3000
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
```

C-132

Mission name = LATN - EXISTING - H60

```
70 kias Power =
Aircraft code =FM6210100 Speed =
                                                          0.0
           Altitude Distribution
                               Percent
    Lower Alt
                 Upper Alt
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                25.0
      1000
                   3000
                                70.0
      3000
                   5000
                                 5.0
Mission name = LATN - EXISTING - H60 2
Aircraft code =FM6210102 Speed = 130 kias Power =
                                                          0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                               25.0
      1000
                   3000
                                70.0
      3000
                   5000
                                 5.0
Mission name = LATN - EXISTING - H60_3
Aircraft code -FM6210102 Speed - 130 kias Power -
                                                          0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                               25.0
      1000
                   3000
                                70.0
      3000
                   5000
                                 5.0
Mission name = MOODY 2N - ALTERNATIVE 2 - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                         86.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                              Utilization
       100
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                                60.0
Mission name = MOODY 2N - ALTERNATIVE 2 - A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                         93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                              Utilization
       100
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                                60.0
```

```
Mission name - MOODY 2N - ALTERNATIVE 2 - A10 3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                        97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = MOODY 2N - ALTERNATIVE 2 - A29
Aircraft code =FM0870100 Speed = 120 kias Power =
                                                         30.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                             Utilization
                (feet AGL)
       100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = MOODY 2N - ALTERNATIVE 2 - A29_2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                        55.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                5.0
      1000
                   3000
                                5.0
                   5000
      3000
                               30.0
      5000
                   8000
                               60.0
Mission name = MOODY 2N - ALTERNATIVE 2 - A29_3
Aircraft code -FM0870102 Speed - 220 kias Power - 100.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = MOODY 2N - ALTERNATIVE 2 - C130
Aircraft code -FM0290400 Speed - 150 kias Power - 800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
```

```
100
                   1000
                                5.0
      1000
                   3000
                               15.0
                   5000
      3000
                               30.0
      5000
                   8000
                               50.0
Mission name = MOODY 2N - ALTERNATIVE 2 - C130_2
Aircraft code =FM0290401 Speed = 220 kias Power = 1800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = MOODY 2N - ALTERNATIVE 2 - C130_3
Aircraft code -FM0290402 Speed - 250 kias Power - 4700.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
                (feet AGL)
   (feet AGL)
                             Utilization
       100
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = MOODY 2N - ALTERNATIVE 2 - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               10.0
      5000
                   8000
                               80.0
Mission name = MOODY 2N - ALTERNATIVE 2 - H60
Aircraft code =FM6210102 Speed =
                                   70 kias Power =
                                                          0.0
           Altitude Distribution
    Lower Alt
                               Percent
                 Upper Alt
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                               25.0
      1000
                   3000
                               70.0
      3000
                   5000
                                5.0
```

Mission name = MOODY 2N - ALTERNATIVE 2 - H60_2

```
Aircraft code =FM6210101 Speed = 100 kias Power =
                                                          0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                              Utilization
       100
                   1000
                                25.0
      1000
                   3000
                                70.0
      3000
                   5000
                                 5.0
Mission name = MOODY 2N - ALTERNATIVE 2 - H60_3
Aircraft code =FM6210102 Speed = 130 kias Power =
                                                          0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                              Utilization
       100
                   1000
                               25.0
      1000
                   3000
                                70.0
      3000
                   5000
                                 5.0
Mission name = MOODY 2S - ALTERNATIVE 2 - A10
Aircraft code -FM0090100 Speed - 180 kias Power -
                                                         86.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                               60.0
Mission name = MOODY 2S - ALTERNATIVE 2 - A10_2
Aircraft code -FM0090101 Speed - 250 kias Power -
                                                         93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                              Utilization
       500
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                                60.0
Mission name = MOODY 2S - ALTERNATIVE 2 - A10 3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                         97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                (feet AGL)
                              Utilization
       500
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                                60.0
```

```
Mission name = MOODY 2S - ALTERNATIVE 2 - A29
Aircraft code -FM0870100 Speed - 120 kias Power -
                                                           30.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
       500
                    1000
                                  5.0
      1000
                    3000
                                  5.0
      3000
                    5000
                                 30.0
      5000
                    8000
                                 60.0
Mission name = MOODY 2S - ALTERNATIVE 2 - A29_2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                           55.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
       500
                    1000
                                  5.0
      1000
                    3000
                                  5.0
      3000
                    5000
                                 30.0
      5000
                    8000
                                60.0
Mission name = MOODY 2S - ALTERNATIVE 2 - A29_3
Aircraft code =FM0870102 Speed = 220 kias Power = 100.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
       500
                    1000
                                  5.0
      1000
                                  5.0
                    3000
      3000
                    5000
                                 30.0
      5000
                    8000
                                60.0
Mission name - MOODY 2S - ALTERNATIVE 2 - C130
Aircraft code =FM0290400 Speed = 150 kias Power = 800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
       500
                    1000
                                  5.0
      1000
                    3000
                                 15.0
      3000
                    5000
                                 30.0
      5000
                    8000
                                 50.0
Mission name - MOODY 2S - ALTERNATIVE 2 - C130_2
Aircraft code =FM0290401 Speed = 220 kias Power = 1800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
```

```
Utilization
   (feet AGL)
                  (feet AGL)
        500
                      1000
                                    5.0
       1000
                                   15.0
                      3000
       3000
                      5000
                                   30.0
       5000
                     8000
                                   50.0
Mission name = MOODY 2S - ALTERNATIVE 2 - C130_3
Aircraft code =FM0290402 Speed = 250 kias Power = 4700.0
            Altitude Distribution
    Lower Alt
                   Upper Alt
                                   Percent
   (feet AGL)
                  (feet AGL)
                                 Utilization
        500
                     1000
                                    5.0
       1000
                      3000
                                   15.0
       3000
                      5000
                                   30.0
       5000
                     8000
                                   50.0
Mission name - MOODY 2S - ALTERNATIVE 2 - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                               80.0
            Altitude Distribution
    Lower Alt
                   Upper Alt
                                   Percent
   (feet AGL)
                  (feet AGL)
                                 Utilization
        500
                     1000
                                    5.0
       1000
                     3000
                                    5.0
       3000
                      5000
                                   10.0
       5000
                     8000
                                   80.0
Mission name = MOODY 2S - ALTERNATIVE 2 - H60
Aircraft code =FM6210100 Speed =
                                        70 kias Power =
                                                                0.0
            Altitude Distribution
    Lower Alt
                   Upper Alt
                                   Percent
   (feet AGL)
                  (feet AGL)
                                 Utilization
        500
                     1000
                                   25.0
       1000
                     3000
                                   70.0
       3000
                      5000
                                    5.0
Mission name = MOODY 2S - ALTERNATIVE 2 - H60_2
Aircraft code =FM6210101    Speed = 100 kias Power =
                                                                0.0
            Altitude Distribution
    Lower Alt
                                   Percent
                   Upper Alt
   (feet AGL)
                  (feet AGL)
                                 Utilization
        500
                      1000
                                   25.0
       1000
                      3000
                                   70.0
       3000
                      5000
                                    5.0
```

Mission name = MOODY 2S - ALTERNATIVE 2 - H60_3

```
Aircraft code =FM6210102 Speed = 130 kias Power =
                                                           0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
       500
                    1000
                                25.0
      1000
                    3000
                                70.0
      3000
                    5000
                                 5.0
Mission name = MUSTANG - ALTERNATIVE 2 - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                          86.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
                 (feet AGL)
   (feet AGL)
                              Utilization
      8000
                  23000
                               100.0
Mission name = MUSTANG - ALTERNATIVE 2 - A10_2
Aircraft code -FM0090101 Speed - 250 kias Power -
                                                          93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
      8000
                  23000
                               100.0
Mission name = MUSTANG - ALTERNATIVE 2 - A10 3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                          97.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
      8000
                  23000
                               100.0
Mission name - MUSTANG - ALTERNATIVE 2 - F35
Aircraft code =FM0890200 Speed = 350 kias Power =
                                                          75.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
      8000
                   23000
                              100.0
Mission name = MUSTANG - ALTERNATIVE 2 - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                          80.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
      8000
                  23000
                               100.0
```

Mission name = MUSTANG LOW - ALTERNATIVE 2 - C130

```
Aircraft code =FM0290400 Speed = 150 kias Power =
                                                       800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               18.2
      2999
                   5000
                               27.3
      5000
                   8000
                               54.5
Mission name = MUSTANG LOW - ALTERNATIVE 2 - C130 2
Aircraft code =FM0290401 Speed = 220 kias Power = 1800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               18.2
      2999
                   5000
                               27.3
      5000
                   8000
                               54.5
Mission name = MUSTANG LOW - ALTERNATIVE 2 - C130_3
Aircraft code -FM0290402 Speed - 250 kias Power - 4700.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               18.2
      2999
                   5000
                               27.3
      5000
                   8000
                               54.5
Mission name = MUSTANG LOW - ALTERNATIVE 2 - H60
Aircraft code =FM6210100 Speed =
                                   70 kias Power =
                                                         0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               95.0
      3000
                   5000
                                5.0
Mission name = MUSTANG LOW - ALTERNATIVE 2 - H60_2
Aircraft code =FM6210101 Speed = 100 kias Power =
                                                         0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
                (feet AGL)
   (feet AGL)
                             Utilization
      2000
                   3000
                               95.0
      3000
                   5000
                                5.0
Mission name = MUSTANG LOW - ALTERNATIVE 2 - H60_3
Aircraft code -FM6210102 Speed - 130 kias Power -
                                                         0.0
           Altitude Distribution
```

```
Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               95.0
      3000
                   5000
                                 5.0
Mission name = MUSTANG LOW - ALTERNATIVE 2- A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                         86.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name - MUSTANG LOW - ALTERNATIVE 2- A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                         93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = MUSTANG LOW - ALTERNATIVE 2- A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                         97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = MUSTANG LOW - ALTERNATIVE 2- A29
Aircraft code =FM0870100 Speed = 120 kias Power =
                                                         30.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name - MUSTANG LOW - ALTERNATIVE 2- A29_2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                         55.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
```

```
(feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                                10.0
      3000
                   5000
                                30.0
      5000
                   8000
                                60.0
Mission name = MUSTANG LOW - ALTERNATIVE 2 - A29_3
Aircraft code =FM0870102 Speed = 220 kias Power = 100.0
           Altitude Distribution
                               Percent
    Lower Alt
                 Upper Alt
   (feet AGL)
                (feet AGL)
                              Utilization
      2000
                   3000
                                10.0
      3000
                   5000
                                30.0
      5000
                   8000
                               60.0
Mission name - MUSTANG LOW - ALTERNATIVE 2- F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                         80.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                              Utilization
      2000
                   3000
                               10.0
      3000
                   5000
                                10.0
      5000
                   8000
                                80.0
Mission name = R3008AB - EXISTING - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                         86.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                (feet AGL)
                              Utilization
       100
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                                60.0
Mission name = R3008AB - EXISTING - A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                         93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                (feet AGL)
                              Utilization
       100
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                                60.0
Mission name - R3008AB - EXISTING - A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                         97.0
```

Altitude Distribution

```
Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = R3008AB - EXISTING - A29
Aircraft code =FM0870100 Speed = 120 kias Power =
                                                         30.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name - R3008AB - EXISTING - A29_2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                         55.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name - R3008AB - EXISTING - A29_3
Aircraft code =FM0870102 Speed = 220 kias Power = 100.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = R3008AB - EXISTING - C130
Aircraft code =FM0290400 Speed = 150 kias Power = 800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
```

30.0

5000

8000

50.0

```
Mission name - R3008AB - EXISTING - C130_2
Aircraft code =FM0290401 Speed = 220 kias Power = 1800.0
           Altitude Distribution
                Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = R3008AB - EXISTING - C130 3
Aircraft code =FM0290402 Speed = 250 kias Power = 4700.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = R3008AB - EXISTING - F35
Aircraft code =FM0890200 Speed = 350 kias Power =
                                                        75.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               10.0
      5000
                   8000
                               80.0
Mission name = R3008AB - EXISTING - H60
Aircraft code =FM6210100 Speed =
                                    70 kias Power =
                                                         0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                               25.0
      1000
                   3000
                               70.0
      3000
                   5000
                                5.0
Mission name - R3008AB - EXISTING - H60_2
Aircraft code =FM6210101 Speed = 100 kias Power =
                                                         0.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
```

```
(feet AGL)
                (feet AGL)
                             Utilization
       100
                    1000
                                25.0
      1000
                    3000
                                70.0
      3000
                    5000
                                 5.0
Mission name = R3008AB - EXISTING - H60_3
Aircraft code =FM6210101 Speed = 130 kias Power =
                                                          0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                              Utilization
       100
                    1000
                                25.0
      1000
                    3000
                                70.0
      3000
                    5000
                                 5.0
Mission name - R3008C - ALTERNATIVE 2 - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                         86.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                              Utilization
       100
                   1000
                                5.0
      1000
                   3000
                                 5.0
      3000
                    5000
                               30.0
      5000
                   8000
                                60.0
Mission name = R3008C - ALTERNATIVE 2 - A10 2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                         93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                              Utilization
                   1000
       100
                                 5.0
      1000
                    3000
                                 5.0
      3000
                    5000
                                30.0
      5000
                   8000
                                60.0
Mission name = R3008C - ALTERNATIVE 2 - A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                         97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                              Utilization
       100
                    1000
                                 5.0
      1000
                    3000
                                 5.0
      3000
                    5000
                                30.0
      5000
                   8000
                                60.0
```

Mission name = R3008C - ALTERNATIVE 2 - A29

```
Aircraft code =FM0870100 Speed = 120 kias Power =
                                                        30.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = R3008C - ALTERNATIVE 2 - A29_2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                        55.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = R3008C - ALTERNATIVE 2 - A29_3
Aircraft code =FM0870102 Speed = 220 kias Power = 100.0
           Altitude Distribution
   Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = R3008C - ALTERNATIVE 2 - C130
Aircraft code -FM0290400 Speed - 150 kias Power - 800.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = R3008C - ALTERNATIVE 2 - C130 2
Aircraft code =FM0290401 Speed = 220 kias Power = 1800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                                5.0
      1000
                   3000
                               15.0
```

```
3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = R3008C - ALTERNATIVE 2 - C130_3
Aircraft code -FM0290402 Speed - 250 kias Power - 4700.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = R3008C - ALTERNATIVE 2 - F35
Aircraft code -FM0890200 Speed - 350 kias Power -
                                                        75.0
           Altitude Distribution
                Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               10.0
      5000
                   8000
                               80.0
Mission name = R3008C - ALTERNATIVE 2 - H60
Aircraft code =FM6210100 Speed = 70 kias Power =
                                                         0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                               25.0
      1000
                   3000
                               70.0
      3000
                   8000
                                5.0
Mission name = R3008C - ALTERNATIVE 2 - H60_2
Aircraft code =FM6210101 Speed = 100 kias Power =
                                                         0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                               25.0
      1000
                   3000
                               70.0
      3000
                   8000
                                5.0
Mission name - R3008C - ALTERNATIVE 2 - H60_3
Aircraft code =FM6210102 Speed = 130 kias Power =
                                                         0.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
```

```
Utilization
   (feet AGL)
                (feet AGL)
       100
                   1000
                               25.0
      1000
                               70.0
                   3000
      3000
                   8000
                                5.0
Mission name = SABRE - EXISTING - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                        80.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name = SABRE - EXISTING - F35
Aircraft code =FM0890200 Speed = 350 kias Power =
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                            Utilization
      8000
                  23000
                              100.0
Mission name = THUD - ALTERNATIVE 2 - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                        86.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
                  23000
      4000
                              100.0
Mission name = THUD - ALTERNATIVE 2 - A10_2
Aircraft code -FM0090101 Speed - 250 kias Power -
                                                        93.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      4000
                  23000
                              100.0
Mission name = THUD - ALTERNATIVE 2 - A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                        97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      4000
                  23000
                              100.0
Mission name - THUD - ALTERNATIVE 2 - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                        80.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
```

```
(feet AGL)
   (feet AGL)
                             Utilization
      4000
                  23000
                              100.0
Mission name = THUD - ALTERNATIVE 2 - F35
Aircraft code -FM0890200 Speed - 350 kias Power -
                                                        75.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      4000
                  23000
                              100.0
Mission name = WARHANK - ALTERNATIVE 2 - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                        86.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
                (feet AGL)
                             Utilization
   (feet AGL)
      8000
                  23000
                              100.0
Mission name - WARHAWK - ALTERNATIVE 2 - A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                        93.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                            Utilization
      8000
                  23000
                             100.0
Mission name = WARHAWK - ALTERNATIVE 2 - A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
          Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name = WARHANK - ALTERNATIVE 2 - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
          Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name = WARHAWK - ALTERNATIVE 2 - F35
Aircraft code =FM0890200 Speed = 350 kias Power =
                                                        75.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                             100.0
```

```
Mission name = WARHAWK LOW - ALTERNATIVE 2 - C130
Aircraft code -FM0290400 Speed - 150 kias Power - 800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               18.2
      3000
                   5000
                               27.3
      5000
                   8000
                               54.5
Mission name = WARHANK LOW - ALTERNATIVE 2 - C130_2
Aircraft code =FM0290401 Speed = 220 kias Power = 1800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
                             Utilization
   (feet AGL)
                (feet AGL)
      2000
                   3000
                               18.2
      3000
                   5000
                               27.3
      5000
                   8000
                               54.5
Mission name = WARHAWK LOW - ALTERNATIVE 2 - C130 3
Aircraft code =FM0290402 Speed = 250 kias Power = 4700.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               18.2
      3000
                   5000
                               27.3
      5000
                   8000
                               54.5
Mission name = WARHANK LOW - ALTERNATIVE 2 - H60
Aircraft code -FM6210100 Speed -
                                   70 kias Power -
                                                         0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               95.0
      3000
                   5000
                                5.0
Mission name = WARHANK LOW - ALTERNATIVE 2 - H60 2
Aircraft code =FM6210100 Speed = 70 kias Power =
                                                         0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               95.0
      3000
                   5000
```

```
Mission name = WARHANK LOW - ALTERNATIVE 2 - H60 3
Aircraft code -FM6210102 Speed - 130 kias Power -
                                                          0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               95.0
      3000
                   5000
                                 5.0
Mission name = WARHAWK LOW - ALTERNATIVE 2- A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                         86.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = WARHAWK LOW - ALTERNATIVE 2- A10_2
Aircraft code -FM0090101 Speed - 250 kias Power -
                                                         93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = WARHAWK LOW - ALTERNATIVE 2- A10 3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                         97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = WARHANK LOW - ALTERNATIVE 2- A29
Aircraft code =FM0870100 Speed = 120 kias Power =
                                                         30.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      2000
                   3000
                               10.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
```

Mission name = WARHANK LOW - ALTERNATIVE 2 - A29_2

Altitude Distribution	55.0
Lower Alt Upper Alt Percent	
(feet AGL) (feet AGL) Utilization	
2000 3000 10.0	
3000 5000 30.0	
5000 8000 60.0	
Mission name = WARHAWK LOW - ALTERNATIVE 2- A29 3	
	100 0
Aircraft code =FM0870102 Speed = 220 kias Power = Altitude Distribution	100.0
Lower Alt Upper Alt Percent	
(feet AGL) (feet AGL) Utilization	
2000 3000 10.0	
3000 5000 30.0	
5000 8000 60.0	
The state of the s	
Mission name = WARHAWK LOW - ALTERNATIVE 2 - F18	00.0
Aircraft code -FM0450100 Speed - 350 kias Power - Altitude Distribution	80.0
Lower Alt Upper Alt Percent	
(feet AGL) (feet AGL) Utilization	
2000 3000 10.0	
3000 5000 10.0	
5000 8000 80.0	

MOA OPERATION DATA MOA name = CORSAIR NORTH LOW MOA - 2000

			Daily		
Month.	ly	Yearly			
	Mission		Day	Night	Day
Night	Day	Night Time On Range			
	Name		OPS	OPS	OPS
OPS	OPS	OPS (minutes)			
	CORSAIR N LOW	- ALTERNATIVE 2- A10	1.044	0.117	31.33
3.50	376.	42. 4.			
	CORSAIR N LOW	- ALTERNATIVE 2- A10_2	1.044	0.117	31.33
3.50	376.	42. 14.			
	CORSAIR N LOW	- ALTERNATIVE 2- A10_3	1.044	0.117	31.33
3.50	376.	42. 2.			
	CORSAIR N LOW	- ALTERNATIVE 2 - C130	0.025	0.025	0.75
0.75	9.	9. 3.			
	CORSAIR N LOW	- ALTERNATIVE 2 - C130_2	0.025	0.025	0.75
0.75	9.	9. 24.			
	CORSAIR N LOW	- ALTERNATIVE 2 - C130_3	0.025	0.025	0.75

0,75	9. 9. 3.			
	CORSAIR N LOW - ALTERNATIVE 2 - H60	0.053	0.014	1.58
0.42	4 a. a. a. a. a. a. a. a. 1977 1888 a.			
	CORSAIR N LOW - ALTERNATIVE 2 - H60_2	0.053	0.014	1.58
0.42	하는 생기 되고 있다면 하지만 할 것이라요? 그 사이들이 생생하는 것은 사람이 되는 사람들이 그래 되는 사이트를	1 10000000	200222	200220
02032	CORSAIR N LOW - ALTERNATIVE 2 - H60_3	0.053	0.014	1.58
0.42				
	CORSAIR N LOW - ALTERNATIVE 2- A29	1.250	0.067	37.50
2.00		4 250		
	CORSAIR N LOW - ALTERNATIVE 2- A29_2	1.250	0.067	37.50
2.00	- Tarana - Barana - Tarana -	4 250	0.007	27.50
	CORSAIR N LOW - ALTERNATIVE 2- A29_3	1.250	0.067	37.50
2.00	가입니다 그 경기 회사 회사 이 아이는 생각이 가입니다. 그 아이를 하는 것이 되었다.	0.10)	0.000	5 50
0.05	CORSAIR N LOW - ALTERNATIVE 2- F18	0.183	0.008	5.50
0.25	66. 3. 33.			
24	MAL CONCATO MODILI MAA			
- 1	MOA name = CORSAIR NORTH MOA	n.d		
45	4	Dai	Ly	
Month.	N. C.	Davis	04 -64	Dev
ud abt	Mission Day Night Time On Rang	Day	Night	Day
Night	Day Night Time On Rang Name	OPS OPS	OPS	OPS
OPS	OPS OPS (minutes)	OPS	UPS	UPS
UPS	CORSAIR N - ALTERNATIVE 2- A10	4.781	0.531	143.42
15.92		4.701	0.551	145.42
15.92	CORSAIR N - ALTERNATIVE 2- A10 2	4.781	0.531	143,42
15.92		4.781	0.551	145.42
15.92	CORSAIR N - ALTERNATIVE 2- A10 3	4,781	0.531	143.42
15.92		4.781	0.551	143.42
13.92	CORSAIR N - ALTERNATIVE 2- A29	0.467	0.025	14.00
0.75		0.467	0.023	14.00
0.75	CORSAIR N - ALTERNATIVE 2- A29 2	0.467	0.025	14.00
0.75	To a company of the Control of the C	0.407	0.023	14.00
0.73	CORSAIR N - ALTERNATIVE 2- A29_3	0.467	0.025	14.00
0.75		0.407	0.025	14.00
0.73	CORSAIR N - ALTERNATIVE 2- F18	0.644	0.033	19.33
1.00		0.044	0.055	15.55
1.00	252. 12. 35.			
	MOA name = CORSAIR SOUTH LOW MOA - 200	0		
	HOA Halle = CONSAIN SOOTH LOW HOA - 200	Dai	l v	
Month	ly Yearly	Dai	- 4	
ramen.	Mission	Day	Night	Day
Night			GIRIC	Day
arthur	Name	OPS	OPS	OPS
OPS	OPS OPS (minutes)	VF 3	OFG	OF 3
OF 3	CORSAIR S LOW - ALTERNATIVE 2- A10	1,044	0.117	31.33
3,50		1.044	0.11/	31.33
3,50	CORSAIR S LOW - ALTERNATIVE 2- A10_2	1.044	0.117	31.33
	CONSMAN S LOW - HETERMANIANE Z- MIG_Z	1.044	0.11	31.33

3,50	376. 42. 14.			
	CORSAIR S LOW - ALTERNATIVE 2- A10_3	1.044	0.117	31,33
3,50				
	CORSAIR S LOW - ALTERNATIVE 2 - C130	0.025	0.025	0.75
0.75				
	CORSAIR S LOW - ALTERNATIVE 2 - C130_2	0.025	0.025	0.75
0.75				
	CORSAIR S LOW - ALTERNATIVE 2 - C130_3	0.025	0.025	0.75
0.75			4000000000	200
	CORSAIR S LOW - ALTERNATIVE 2 - H60	0.053	0.014	1.58
0.42	Markara and a control fill fill and a control of the control fill fill and a control of the fill and a control	1921 22220	1002000	2002
	CORSAIR S LOW - ALTERNATIVE 2 - H60_2	0.053	0.014	1.58
0.42	마양 그 동안 그 경영 화면 하면 하는 것이 되었다. 그렇게 하고 말라고 하는 것이 되었다면 하다 하고 말라고 그렇다.	0.052		
0.40	CORSAIR S LOW - ALTERNATIVE 2 - H60_3	0.053	0.014	1.58
	19. 5. 15.	0.150	0.000	4.50
0,25	CORSAIR S LOW - ALTERNATIVE 2- A29	0.150	0.008	4,30
0.23	CORSAIR S LOW - ALTERNATIVE 2- A29_2	0.150	0.008	4.50
0,25		0.130	0.000	4.30
0.25	CORSAIR S LOW - ALTERNATIVE 2- A29_3	0.150	0.008	4.50
0.25		0.130	0.000	4130
	CORSAIR S LOW - ALTERNATIVE 2- F18	0.183	0.008	5.50
	66. 3. 33.	0.105	0.000	2.20
	MOA name = CORSAIR SOUTH MOA			
		Dai	ly	
Month	ly Yearly		35	
	Mission	Day	Night	Day
Night	Day Night Time On Range	100000	A. 1622 D. C. C.	20005000
18	Name	OPS	OPS	OPS
OPS	OPS OPS (minutes)			
	CORSAIR S - ALTERNATIVE 2- A10	3,286	0.364	98.58
10,92	1183. 131. 12.			
	CORSAIR S - ALTERNATIVE 2- A10_2	3.286	0.364	98.58
10.92				
	CORSAIR S - ALTERNATIVE 2- A10_3	3.286	0.364	98.58
10.92	1183. 131. 6.			
	CORSAIR S - ALTERNATIVE 2 - A29	1.389	0.072	41.67
2.17			5024000	
0.2710202	CORSAIR S - ALTERNATIVE 2- A29_2	1.389	0.072	41.67
2.17				
12.50	CORSAIR S - ALTERNATIVE 2- A29_3	1.389	0.072	41.67
2.17	500. 26. 24.	0.000	0.047	20.00
	CORSAIR S - ALTERNATIVE 2- F18	0.889	0.047	26.67

MOA name - GRAND BAY MOA AND R3008C

17.

320.

Daily

Month:	ly	Yearly				
	Mission	127100000 5 171		Day	Night	Day
Night		Night	Time On Range	(4)(3)		22.00
	Name		.,	OPS	OPS	OP5
OPS	OPS	OPS	(minutes)	177779	0.823483	27,75%
0. 0	R3008C - ALTE			7,850	0.872	235.50
26.17		314.	12.	,,,,,,	0.0.2	255.50
20,1,	R3008C - ALTE			7,850	0.872	235.50
26.17		314.	8.	1,030	0.012	233,30
20.17	R3008C - ALTE			7.850	0.872	235.50
26 47				7.050	0.672	235.50
26.17		314.	1.	0.764		03.03
	R3008C - ALTE			2.761	0.144	82.83
4.33		52.	1.	100102-001	200200	12:57 (12:5)
10001104101	R3008C - ALTE			2.761	0.144	82.83
4.33			4.			
	R3008C - ALTE	RNATIVE 2 -	· A29_3	2,761	0.144	82.83
4.33		52.	2.			
	R3008C - ALTE	RNATIVE 2 -	C130	0.378	0.356	11.33
10.67	136.	128.	24.			
	R3008C - ALTE	RNATIVE 2	C130_2	0.378	0.356	11.33
10,67	136.	128.	24.			
	R3008C - ALTE	RNATIVE 2	C130 3	0.378	0.356	11.33
10.67		128.	3.			
	R3008C - ALTE			0.031	0.003	0.92
0.08		1.	8.			
0.00	R3008C - ALTE			1.972	0.525	59.17
15.75		189.	2.	1	0.323	
13.73	R3008C - ALTE			1.972	0.525	59.17
15 75				1.9/2	0.323	59.17
15.75	710.			4 070	0 505	50.47
	R3008C - ALTE		. ньи_з	1.972	0.525	59.17
15,75	710.	189.	4.			
- 3	MOA name - HAW	NG NORTH MO/	V.			
				Dail	.y	
Month:	ly	Yearly				
	Mission			Day	Night	Day
Night	Day	Night	Time On Range			
	Name			OPS	OPS	OPS
OPS	OPS	OPS	(minutes)			
	HANG N - ALTE	RNATIVE 2	A10	6.278	0.697	188.33
20.92					31.4,1141.6	
2007.00	HANG N - ALTE			6.278	0.697	188.33
20.92		251.	35.			
20.72	HAWG N - ALTE			6.278	0.697	188.33
20.92		251.	~10_3	0.270	0.057	100.33
20.72			J.	0.156	0.009	4 67
0.25	HAWG N - ALTE			0.156	0.008	4.67
0.25	56.	3.	116.			

MOA name = HAWG	SOUTH MOA	N .			
W467	V===1		Dai	.ly	
Monthly	Yearly		B-11	end white	B-0
Mission	and whole		Day	Night	Day
Night Day	MIGHT	Time On Range	one	OPS	one
Name	one	(missister)	OPS	UPS	OP5
OPS OPS	OPS	(minutes)	6 270	0.007	400.00
HAWG S - ALTERI			6.278	0.697	188.33
20.92 2260.	251.	10.	6 270	0 007	100.33
HAWG S - ALTERI			6.278	0.697	188.33
20.92 2260.	251.	35.			400 00
HAWG S - ALTERI			6.278	0.697	188.33
20.92 2260.	251.	5.	0500000	277232	2752
HAWG 5 - ALTERI			0.156	0.008	4.67
0.25 56.	3.	116.			
MOA name = LATN					
			Dai	.ly	
Monthly	Yearly			S	
Mission	Accordence Service		Day	Night	Day
Night Day	Night	Time On Range	12.3000	36 T 10 T	
Name			OPS	OPS	OPS
OPS OPS	OPS	(minutes)			
LATN - EXISTING	5 - A10		7,850	0.872	235,50
26.17 2826.	314.	2.			
LATN - EXISTING			7,850	0.872	235,50
26.17 2826.	314.	8.	7		
LATN - EXISTING		107.74	7,850	0.872	235.50
26.17 2826.	314.	1.	,,,,,,,		
LATN - EXISTING			1,419	1,336	42.58
40,08 511,	481.	3.	1,415	11550	42,20
LATH - EXISTING			1,419	1,336	42.58
40,08 511.	481.	24.	11,712	1,550	42730
LATN - EXISTING		9.775555	1.419	1.336	42.58
40.08 511.	481.	3.	1.419	1.550	42.50
LATN - EXISTING		٥.	2.961	0.786	88.83
23.58 1066.	283.	2.	2.901	0.700	00.03
LATN - EXISTING		2.	2.961	0.786	88.83
23.58 1066.	283.	25.	2.901	0.700	00.00
		25.	2.961	0.706	00.00
LATN - EXISTING	100 CO	2	2.961	0.786	88.83
23.58 1066.	283.	4.			
MOA name = MOOD	Y 2 NORTH	MOA - 100			
			Dai	.ly	
Monthly	Yearly				
Mission	18 8750		Day	Night	Day
Night Day	Night	Time On Range	10.05000	W-22000	480,5111
Name	8		OPS	OPS	OPS

OPS	OPS	OPS		(minutes)			
	MOODY 2N -	ALTERNATIVE	2 -	A10	6,278	0.697	188.33
20.92		251.		4.			
		ALTERNATIVE	2 -	A10_2	6.278	0.697	188.33
20.92	2260.	251.		14.			
	MOODY 2N -	ALTERNATIVE	2 -	A10_3	6.278	0.697	188.33
20.92	2260.	251.		2.			
	MOODY 2N -	ALTERNATIVE	2 -	A29	1.317	0.069	39.50
2.08	474.	25.		15.			
	MOODY 2N -	ALTERNATIVE	2 -	A29_2	1.317	0.069	39.50
2.08	474.	25.		47.			
		ALTERNATIVE	2 -	A29_3	1.317	0.069	39.50
2.08	THE COLD WAS DESCRIPTION OF THE PARTY OF THE			15.			
		ALTERNATIVE	2 -	C130	0.342	0.319	10.25
9.58	20000			3.			
	MOODY 2N -	ALTERNATIVE	2 -	C130_2	0.342	0.319	10.25
9.58		115.		24.			
		ALTERNATIVE	2 -		0.342	0.319	10.25
9.58				3.			
		ALTERNATIVE	2 -		1.108	0.058	33.25
1.75			25	43.	1000000	2012223	1221122
12012		ALTERNATIVE	2 -		1.894	0.503	56.83
15.08			_	15.			
45.00		ALTERNATIVE	2 -	10000 to 10000	1.894	0.503	56.83
15.08				128.	4 004	0 503	FC 03
15.08		ALTERNATIVE 181.		15.	1.894	0.503	56.83
13.00	002.1	1011					
1	MOA name = 1	MOODY 2 SOUTH	MO	Д			
					Dail	У	
Month.		Yearly			23		W -
	Mission	250423454	032	.00010-12-00-12-00-12-00-12-00-12-00-12-00-12-00-12-00-12-00-12-00-12-00-12-00-12-00-12-00-12-00-12-00-12-00-	Day	Night	Day
Night	00000	Night	1	ime On Range		See.	
ODE	Name	one		/minutes)	OPS	OPS	OP5
OPS	OPS		2	(minutes)	6.278	0.697	188.33
20.92		ALTERNATIVE	-	4.	0.278	0.697	188.55
20.92		251. ALTERNATIVE	2		6.278	0.697	188.33
20.92			-	14.	0.276	0.037	100.33
20.52		ALTERNATIVE	2 -		6.278	0.697	188.33
20.92				$\frac{1}{2}$,	41274	0.1437	100133
		ALTERNATIVE		3777.75	1.317	0.069	39.50
2,08				15.			
2100		ALTERNATIVE	2 -		1.317	0.069	39.50
2.08				47.			
		ALTERNATIVE	2 -		1.317	0.069	39.50
2,08				15.		000000000	000000000000000000000000000000000000000
	MOODY 25 -	ALTERNATIVE	2 -	C130	0.342	0.319	10.25
9.58	123.	115.		3.			

MOODY 25 - ALTERNATIVE 2 - C130_2	0.342	0.319	10.25
9.58 123. 115. 24. MOODY 25 - ALTERNATIVE 2 - C130_3	0,342	0.319	10.25
9.58 123. 115. 3.			
MOODY 2S - ALTERNATIVE 2 - F18 1,75 399, 21, 43,	1.108	0.058	33.25
MOODY 2S - ALTERNATIVE 2 - H60	2.039	0.358	61.17
10.75 734. 129. 15.	5494020331 52942230	E112E124	9870 JUGS
MOODY 2S - ALTERNATIVE 2 - H60_2 10.75 734. 129. 128.	2.039	0.358	61.17
MOODY 2S - ALTERNATIVE 2 - H60_3	2.039	0.358	61.17
10.75 734. 129. $1\overline{5}$.			
MOA name = MUSTANG LOW MOA - 2000			
	Dai	ly	
Monthly Yearly	W	FOT 18 W	W00000
Mission Night Day Night Time On Range	Day	Night	Day
Name	OPS	OPS	OPS
OPS OPS OPS (minutes)	121222	20002	27.22
MUSTANG LOW - ALTERNATIVE 2 - C130 0.75 9. 9. 3.	0.025	0.025	0.75
MUSTANG LOW - ALTERNATIVE 2 - C130_2	0.025	0.025	0.75
0.75 9. 9. 24.	72772427	2012/22/21	
MUSTANG LOW - ALTERNATIVE 2 - C130_3 0.75 9. 9. 3.	0.025	0.025	0.75
MUSTANG LON - ALTERNATIVE 2 - H60	0.053	0.014	1.58
0.42 19. 5. 15.	0.053	0.014	1.50
MUSTANG LOW - ALTERNATIVE 2 - H60_2 0,42 19, 5, 128,	0.053	0.014	1.58
MUSTANG LOW - ALTERNATIVE 2 - H60_3	0.053	0.014	1.58
0.42 19. 5. 15.	1411444	2 2 2 2	
MUSTANG LOW - ALTERNATIVE 2- A10 3.50 376. 42. 4.	1.044	0.117	31.33
MUSTANG LOW - ALTERNATIVE 2- A10_2	1.044	0.117	31.33
3.50 376. 42. 14.		0.447	24 22
MUSTANG LOW - ALTERNATIVE 2- A10_3 3.50 376. 42. 2.	1.044	0.117	31.33
MUSTANG LOW - ALTERNATIVE 2- A29	0.050	0.003	1.50
0.08 18. 1. 15.			4 50
MUSTANG LOW - ALTERNATIVE 2- A29_2 0.08 18. 1. 47.	0.050	0.003	1.50
MUSTANG LOW - ALTERNATIVE 2- A29_3	0.050	0.003	1.50
0.08 18. 1. 15.		0.000	p. n.e.
MUSTANG LOW - ALTERNATIVE 2- F18 0.25 66. 3. 33.	0.183	0.008	5.50
0.25 00. 5. 33.			

MOA name = MUSTANG MOA

	•0000	AN		Dai	ly	
Month.		Yearly		2	0.000	2:
204003050	Mission	052403450	12470112112211201	Day	Night	Day
Night	10000000	Night	Time On Range			
845.000	Name	200000		OPS	OPS	OPS
OPS	OPS	OPS	(minutes)	*********	2-22-2	
		LTERNATIVE		4.494	0.500	134.83
15.00		180.	12.	77 51.7 (2) 22 (27)	627420000	152525255522
0.00110.001		LTERNATIVE	64일	4.494	0.500	134.83
15.00		180.	42.			
		TERNATIVE	The second secon	4.494	0.500	134.83
15.00		180.	6.			
	MUSTANG - AI			0.758	0.039	22.75
1.17		14.	38.			
	MUSTANG - ALT			1.264	0.067	37.92
2.00	455.	24.	30.			
9	MOA name - R30	лаяая				
	ion maine no	2007.6		Dai	1v	
Month:	lv	Yearly			-,	
	Mission	17.00		Day	Night	Day
Night		Night	Time On Range	50,	· Bir	- July
Hand I	Name	"TELLE	rame on mange	OPS	OPS	OPS
OPS	OPS	OPS	(minutes)	0,5	0.5	01.5
013	R3008AB - EXT		Carlo	7,850	0.872	235,50
26.17		314.	10.	7.630	0.072	233.30
20,1,	R3008AB - EXT			7.850	0.872	235.50
26.17		314.	34.	7.030	0.072	233,30
20.17	R3008AB - FX1		2005a	7.850	0.872	235.50
26.17		314,	5.	7.030	0.072	233.30
20.17	R3008AB - EXI			2,761	0.144	82.83
4.33		52.	3.	2,701	0.144	02.03
4,33	R3008AB - EXI			2,761	0.144	82.83
4.33		52.	15.	2.701	0.144	02.03
4.33	R3008AB - EX		255 252 0 V	2,761	0.144	82.83
4.33		52.	7.	2.701	0.144	02.03
4.33	R3008AB - EX			0.378	0.356	11.33
10.67		128.	12.	0.3/6	0.550	11.55
10.07	R3008AB - EX			0.378	0.356	11.33
10.67		128.	96.	0.3/6	0.350	11.55
10.07			1000 1 100 D	0.378	0.356	44 33
10 77	R3008AB - EX		A CONTRACTOR OF THE CONTRACTOR	0.3/6	0.550	11.33
10.67		128.	12.	0.004	0.000	0.00
	R3008AB - EX			0.031	0.003	0.92
0.08		1.	32.	4.070	0.505	FO 07
	R3008AB - EX			1.972	0.525	59.17
15,75	`	189.	6.	4 6 20	A FAF	FA 47
10.75	R3008AB - EX			1,972	0.525	59.17
15,75		189.	99.	4 073	0 535	50.45
	R3008AB - EX	1211MP - HP	NO_3	1.972	0.525	59.17

15,75	710.	189.	15.			
1	MOA name – SAB	RE MOA		p.d	1.00	
Month:	10	Yearly		Dai	ly	
Pioli Cit.	Mission	1early		Day	Night	Day
Night		Misshit	Time On Range	bay	night	bay
might	Name	MIRIT	Time on Kange	OPS	OPS	OPS
OPS	OPS	OPS	(minutes)	Ul-3	OP3	OF 3
OPS	SABRE - EXIST		(minutes)	0.864	0.044	25.92
1.33		16.	32.	0.864	0.044	25.92
1.33	SABRE - EXIST		32.	0.047	0.003	1,42
0.00		1.	40.	0.047	0.005	1.42
0.08	1/.	1.	40.			
ı	MOA name – THU	D LOW MOA		Dai	1y	
Month:	ly	Yearly				
	Mission			Day	Night	Day
Night	Day	Night	Time On Range			
	Name			OPS	OPS	OPS
OPS	OPS	OPS	(minutes)			
	THUD - ALTERN	ATIVE 2 - A	110	3.450	0.383	103.50
11.50	1242.	138.	12.			
	THUD - ALTERN	ATIVE 2 - A	410_2	3.450	0.383	103.50
11.50	1242.	138.	42.			
	THUD - ALTERN	ATIVE 2 - A	A10_3	3.450	0.383	103.50
11.50	1242.	138.	6.			
	THUD - ALTERN	ATIVE 2 - I	18	1.042	0.056	31.25
1.67	375.	20.	30.			
	THUD - ALTERN	ATIVE 2 - H	35	0.778	0.042	23.33
1,25	280.	15.	38.			
1	MOA name – WAR	HAWK LOW MA	DA - 2000			
23	55	626		Dai	ly	
Month.		Yearly		320900	00101268	220000
	Mission			Day	Night	Day
Night		Night	Time On Range			
	Name		140000000000000000000000000000000000000	OPS	OPS	OPS
OPS	OPS		(minutes)			
	WARHAWK LOW -	ALTERNATIO	/E 2 - C130	0.025	0.025	0.75
0.75		9.	3.			
	WARHAWK LOW -			0.025	0.025	0.75
0.75	'보고 있다. (1955년 1965년 1965년 1	9.	24.			
	WARHAWK LOW -		Andread and the control of the contr	0.025	0.025	0.75
0.75		9.	3.			
	WARHAWK LOW -			0.053	0.014	1.58
0.42	19.	5.	15.			

WARHAWK LOW - ALTERNATIVE 2 - H60_2

19. 5. 128.

	WARHAWK LOW -			_	0.053	0.014	1.58
	19.						
	WARHAWK LOW -				1.044	0.117	31.33
	376.		12.				
	WARHAWK LOW -				1.044	0.117	31.33
3.50	376.	42.	42.				
	WARHAWK LOW -				1.044	0.117	31.33
3.50	376.						
	WARHAWK LOW -				0.050	0.003	1.50
0.08	18.		15.				
	WARHAWK LOW -				0.050	0.003	1.50
0.08	18.						
	WARHAWK LOW -				0.050	0.003	1.50
0.08			15.				
	WARHAWK LOW -				0.183	0.008	5.50
0.25	66.	3.	33,				
	MOA name - WAR				Dai	ly	
Month	ly	Yearly					
					Day	Night	Day
MIGHT	Day	Night	Time Or	Range			
	Name				OPS	OPS	OPS
	OPS						
	WARHAWK - ALT				4.494	0.500	134.83
15.00	1618.	180.	12.				
	WARHAWK - ALT				4.494	0.500	134.83
15,00	1618.	180.	60.				
	WARHAWK - ALT				4.494	0.500	134.83
			6.				
	WARHAWK - ALT				1.361	0.072	40.83
	490.						
	WARHAWK - ALT				0.753	0.039	22.58
4 47	274	14	30				
1.1/	271.	14.	20.				

0.053

0.014

1.58

Warning: Grid points spaced greater than 1000 feet apart may not provide the necessary grid resolution, in some cases, to compute noise contours with high accuracy. For low-altitude track operations, the recommended grid spacing is less than 1000 feet.

***** MOA RANGE NOISEMAP ***** RESULTS

The noise metric is Ldnmr.

	MOA RE	ESULTS	
		Uniform	Number
of			
MOA	MOA	Distributed	Daily
Events Above			
Name	Area	Sound Level	SEL of
65.0 dB			
	(sq statute mile:		
CORSAIR NORTH LOW MOA - 1000	755.3	No operations	on this
MOA!			
CORSAIR NORTH LOW MOA - 2000	755.3	35.0	0.0
CORSAIR NORTH LOW MOA - 4000	755.3	No operations	on this
MOA!	223/2	10212	19218
CORSAIR NORTH MOA	755.3	35.0	0.0
CORSAIR SOUTH LOW MOA - 1000	591.9	No operations	on this
MOA!	F01 0	25.0	0.0
CORSAIR SOUTH LOW MOA - 2000 CORSAIR SOUTH LOW MOA - 4000	591.9 591.9	35.0	0.0
MOA!	591.9	No operations	on this
CORSAIR SOUTH MOA	591.9	35.0	0.0
GRAND BAY MOA AND R3008C	89.2	50.1	0.0
HANG NORTH MOA	779.1	35.0	0.0
HAMG SOUTH MOA	704.3	35.0	0.0
LATN	4200.0	35.0	0.0
MOODY 2 NORTH MOA	420.7	No operations	
MOA!			
MOODY 2 NORTH MOA - 100	420.7	45.1	0.0
MOODY 2 SOUTH MOA	536.4	42.0	0.0
MUSTANG LOW MOA - 1000	470.3	No operations	on this
MOA!			
MUSTANG LOW MOA - 2000	470.3	35.0	0.0
MUSTANG LOW MOA - 4000	470.3	No operations	on this
MOA!			
MUSTANG MOA	470.3	39.2	0.0
R3008AB	34.1	59.7	0.0
R3008C	89.2	No operations	on this
MOA!			
SABRE MOA	1599.8	35.0	0.0
THUD LOW MOA	658.3	40.7	0.2
THUD MOA	658.3	No operations	on this
MOA!	502.0	no constant	
WARHAWK LOW MOA - 1000	682.0	No operations	on this

MOA!									
	WARHAWK	LOW MOA	. 9	2000	682.0		35.0		0.0
	MARHAWK	LOW MOA	-	4000	682.0	No	operations	on	this
MOA!									
	WARHAWK	MOA			682.0		37.7		0.4

***** MOA RANGE NOISEMAP ***** RESULTS

SPECIFIC POINT RESULTS

Specific Point: CORSAIR N POI Top 20 contributors to this level:

	Sound Level			
< Aircraft	Airspa	ice	>	Mission
Aircraft	(dB)	HA(%)		
LATN				LATN - EXISTING - A10_2
A-10A	< 35.0			
CORSAIR NORTH	MOA			CORSAIR N - ALTERNATIVE 2- A10_2
A-10A	₹ 35.0			
LATN				LATN - EXISTING - C130_2
C-130J	< 35.0			
CORSAIR NORTH	LOW MOA -	2000		CORSAIR N LOW - ALTERNATIVE 2-
A10_2 A-10A	< 35.0			
LATN				LATN - EXISTING - H60_2
UH60A	< 35.0			
CORSAIR NORTH				CORSAIR N LOW - ALTERNATIVE 2-
A29_3 T-6	< 35.0	18		
LATN				LATN - EXISTING - A10_3
A-10A				
CORSAIR NORTH				CORSAIR N - ALTERNATIVE 2- A10_3
A-10A				
CORSAIR NORTH		2000		CORSAIR N LOW - ALTERNATIVE 2-
A10_3 A-10A	< 35.0			
LATN				LATN - EXISTING - C130_3
C-130J				
CORSAIR NORTH		2000		CORSAIR N LOW - ALTERNATIVE 2 -
H60_2 UH60A				
CORSAIR NORTH				CORSAIR N LOW - ALTERNATIVE 2-
A29_2 T-6	₹ 35.0	E		
LATN				LATN - EXISTING - H60_3

```
UH60A
                 ₹ 35.0
    CORSAIR NORTH LOW MOA - 2000
                                                CORSAIR N LOW - ALTERNATIVE 2- F18
      F-18A/C
                 ₹ 35.0
    LATN
                                                 LATN - EXISTING - C130
      C-130J
                 < 35.0
                                                 LATN - EXISTING - A10
    LATN
                 ₹ 35.0
      A-10A
    CORSAIR NORTH MOA
                                                CORSAIR N - ALTERNATIVE 2- A29_3
      T-6
                 < 35.0
    CORSAIR NORTH LOW MOA - 2000
                                                CORSAIR N LOW - ALTERNATIVE 2 -
C130 2 C-130J
                    < 35.0
    CORSAIR NORTH MOA
                                                 CORSAIR N - ALTERNATIVE 2- F18
      F-18A/C
                 ₹ 35.0
    CORSAIR NORTH LOW MOA - 2000
                                                CORSAIR N LOW - ALTERNATIVE 2 -
H60 3
         UH60A
                    < 35.0
Total Level ......
                        36.2
                                    0.2
    Specific Point: CORSAIR 5 POI
    Top 20 contributors to this level:
                Sound Level
                     Airspace
                                             > Mission
      Aircraft
                    (dB)
                              HA(%)
    LATN
                                                 LATN - EXISTING - A10_2
      A-10A
                 ₹ 35.0
    CORSAIR SOUTH LOW MOA - 2000
                                                CORSAIR 5 LOW - ALTERNATIVE 2-
        A-10A
A10_2
                    < 35.0
                                                 CORSAIR 5 - ALTERNATIVE 2- A10_2
    CORSAIR SOUTH MOA
      A-10A
                 < 35.0
                                                 LATN - EXISTING - C130_2
    LATN
      C-130J
                 < 35.0
    LATN
                                                 LATN - EXISTING - H60_2
      UH60A
                 < 35.0
                                                 LATN - EXISTING - A10_3
    LATN
      A-10A
                 ₹ 35.0
    CORSAIR SOUTH LOW MOA - 2000
                                                 CORSAIR S LOW - ALTERNATIVE 2-
A10 3 A-10A
                    < 35.0
    CORSAIR SOUTH MOA
                                                 CORSAIR 5 - ALTERNATIVE 2- A29_3
      T-6
                 ₹ 35.0
    CORSAIR SOUTH MOA
                                                 CORSAIR 5 - ALTERNATIVE 2- A10_3
                 ₹ 35.0
      A-10A
    LATN
                                                 LATN - EXISTING - C130_3
      C-130J
                 ₹ 35.0
    CORSAIR SOUTH LOW MOA - 2000
                                                CORSAIR 5 LOW - ALTERNATIVE 2 -
H60_2 UH60A
```

C-164 Appendix C

< 35.0

```
CORSAIR SOUTH LOW MOA - 2000
                                                  CORSAIR 5 LOW - ALTERNATIVE 2- F18
       F-18A/C
                 < 35.0
    CORSAIR SOUTH LOW MOA - 2000
                                                  CORSAIR 5 LOW - ALTERNATIVE 2-
A29_3
                     < 35.0
          T-6
    LATN
                                                  LATN - EXISTING - H60_3
       UH6@A
                 < 35.0
    LATN
                                                  LATN - EXISTING - C130
       C-130J
                 < 35.0
    LATN
                                                  LATN - EXISTING - A10
       A-10A
                  ₹ 35.0
    CORSAIR SOUTH LOW MOA - 2000
                                                  CORSAIR S LOW - ALTERNATIVE 2 -
C130 2
        C-130J
                     < 35.0
    CORSAIR SOUTH MOA
                                                  CORSAIR 5 - ALTERNATIVE 2- F18
       F-18A/C
                 < 35.0
    CORSAIR SOUTH MOA
                                                  CORSAIR 5 - ALTERNATIVE 2- A29 2
                  < 35.0
                                                  CORSAIR 5 LOW - ALTERNATIVE 2 -
    CORSAIR SOUTH LOW MOA - 2000
H60_3
         UH60A
                     < 35.0
Total Level ......
                                     0.2
                         35.8
    Specific Point: MOODY2N POI
    Top 20 contributors to this level:
                 Sound Level
                                               > Mission
                      Airspace
       Aircraft
                    (dB)
                               HA(%)
    MOODY 2 NORTH MOA - 100
                                                  MOODY 2N - ALTERNATIVE 2 - A10_2
       A-10A
                    41.4
                                0.5
    MOODY 2 NORTH MOA - 100
                                                  MOODY 2N - ALTERNATIVE 2 - H60 2
       UH60A
                    39.1
                                0.4
    MOODY 2 NORTH MOA - 100
                                                  MOODY 2N - ALTERNATIVE 2 - A10_3
       A-10A
                  < 35.0
    MOODY 2 NORTH MOA - 100
                                                  MOODY 2N - ALTERNATIVE 2 - F18
       F-18A/C
                 < 35.0
    MOODY 2 NORTH MOA - 100
                                                  MOODY 2N - ALTERNATIVE 2 - H60
       UH60A
                  ₹ 35.0
    MOODY 2 NORTH MOA - 100
                                                  MOODY 2N - ALTERNATIVE 2 - H60 3
                 ₹ 35.0
       UH60A
    MOODY 2 NORTH MOA - 100
                                                  MOODY 2N - ALTERNATIVE 2 - C130_2
       C-130J
                  ₹ 35.0
    MOODY 2 NORTH MOA - 100
                                                  MOODY 2N - ALTERNATIVE 2 - A29_3
                  < 35.0
       T-6
    MOODY 2 NORTH MOA - 100
                                                  MOODY 2N - ALTERNATIVE 2 - A10
       A-10A
                  < 35.0
    HAWG NORTH MOA
                                                  HANG N - ALTERNATIVE 2 - A10_2
```

A-10A < 35.0	
MOODY 2 NORTH MOA - 100	MOODY 2N - ALTERNATIVE 2 - C130_3
C-1300 < 35.0	
MOODY 2 NORTH MOA - 100	MOODY 2N - ALTERNATIVE 2 - A29_2
T-6 < 35.0	
MOODY 2 NORTH MOA - 100	MOODY 2N - ALTERNATIVE 2 - C130
C-1303 < 35.0	
HAWG NORTH MOA	HANG N - ALTERNATIVE 2 - A10_3
A-10A < 35.0	
HAWG NORTH MOA	HAWG N - ALTERNATIVE 2 - F18
F-18A/C < 35.0	
MOODY 2 NORTH MOA - 100	MOODY 2N - ALTERNATIVE 2 - A29
T-6 < 35.0	
HAWG NORTH MOA	HANG N - ALTERNATIVE 2 - A10
A-10A < 35.0	
R3008AB	R3008AB - EXISTING - A10_2
A-10A < 35.0	
R3008AB	R3008AB - EXISTING - F35
F-35A < 35.0	
R3008AB	R3008AB - EXISTING - A10_3
A-10A < 35.0	

0.9

Specific Point: MOODY2S POT Top 20 contributors to this level:

45.2

Total Level

- 1	Sound Level	L	
<	Airspa	ice	> Mission
Aircraft		HA(%)	
MOODY 2 SOUTH	MOA		MOODY 25 - ALTERNATIVE 2 - A10_2
A-10A	38.1	0.3	
MOODY 2 SOUTH	MOA		MOODY 2S - ALTERNATIVE 2 - H60_2
UH60A	36.2	0.2	
MOODY 2 SOUTH	MOA		MOODY 25 - ALTERNATIVE 2 - A10_3
A-10A	< 35.0		
MOODY 2 SOUTH	MOA		MOODY 2S - ALTERNATIVE 2 - F18
F-18A/C	< 35.0		
MOODY 2 SOUTH	MOA		MOODY 2S - ALTERNATIVE 2 - C130_2
C-130J	₹ 35.0		
MOODY 2 SOUTH	MOA		MOODY 2S - ALTERNATIVE 2 - H60_3
UH60A	< 35.0		
MOODY 2 SOUTH	MOA		MOODY 2S - ALTERNATIVE 2 - A29_3
T-6	< 35.0		
HAWG SOUTH MOX	A		HANG S - ALTERNATIVE 2 - A10_2
A-10A	< 35.0		1500

MOODY 2 SOUTH MOA	MOODY 2S - ALTERNATIVE 2 - A10
A-10A < 35.0	
MOODY 2 SOUTH MOA	MOODY 2S - ALTERNATIVE 2 - H60
UH60A < 35.0	
MOODY 2 SOUTH MOA	MOODY 25 - ALTERNATIVE 2 - C130_3
C-130J < 35.0	
HANG SOUTH MOA	HAWG S - ALTERNATIVE 2 - A10_3
A-10A < 35.0	
MOODY 2 SOUTH MOA	MOODY 2S - ALTERNATIVE 2 - A29_2
T-6 < 35.0	
MOODY 2 SOUTH MOA	MOODY 2S - ALTERNATIVE 2 - C130
C-130J < 35.0	
HAWG SOUTH MOA	HAWG S - ALTERNATIVE 2 - F18
F-18A/C < 35.0	
MOODY 2 SOUTH MOA	MOODY 2S - ALTERNATIVE 2 - A29
T-6 < 35.0	
HAWG SOUTH MOA	HANG S - ALTERNATIVE 2 - A10
A-10A < 35.0	
R3008AB	R3008AB - EXISTING - A10_2
A-10A < 35.0	
R3008AB	R3008AB - EXISTING - F35
F-35A < 35.0	
R3008AB	R3008AB - EXISTING - A10_3
A-10A < 35.0	\$60.000 PER PARENTE SERVE SER SEC. 10.000 PER PE

0.6

Specific Point: MUSTANG POI Top 20 contributors to this level:

42.2

Total Level

	Sot	and Leve	1	
<		Airsp.	ace	> Mission
Aircraft		(dB)	HA(%)	
MUSTANG MOA				MUSTANG - ALTERNATIVE 2 - F35
F-35A		38.6	0.3	
LATN				LATN - EXISTING - A10_2
A-10A	<	35.0		
MUSTANG MOA				MUSTANG - ALTERNATIVE 2 - A10_2
A-10A		35.0		
MUSTANG LOW	MOA	- 2000		MUSTANG LOW - ALTERNATIVE 2- A10_2
A-10A	<	35.0		
LATN				LATN - EXISTING - C130_2
C-1307	<	35.0		
LATN				LATN - EXISTING - H60_2
UH60A	<	35.0		2502-21 = 1524-2201-250105
LATN				LATN - EXISTING - A10_3

A-10A < 35	5,0	
MUSTANG MOA		MUSTANG - ALTERNATIVE 2 - A10_3
A-10A < 35	5.0	
MUSTANG LOW MOA -	2000	MUSTANG LOW - ALTERNATIVE 2- A10_3
A-10A < 35	5.0	
MUSTANG LOW MOA -	2000	MUSTANG LOW - ALTERNATIVE 2 -
H60_2 UH60A	< 35.0	
MUSTANG LOW MOA -	2000	MUSTANG LOW - ALTERNATIVE 2- F18
F-18A/C < 35	5.0	
LATN		LATN - EXISTING - C130_3
C-130J < 35	5.0	
MUSTANG MOA		MUSTANG - ALTERNATIVE 2 - F18
F-18A/C < 35	5.0	
LATN		LATN - EXISTING - H60_3
UH60A < 35	5.0	
LATN		LATN - EXISTING - C130
C-1300 < 35	5.0	
MUSTANG LOW MOA -	2000	MUSTANG LOW - ALTERNATIVE 2 -
C130_2 C-130J	< 35.0	
LATN		LATN - EXISTING - A10
A-10A < 35	5.0	
MUSTANG LOW MOA -	2000	MUSTANG LOW - ALTERNATIVE 2- A29_3
T-6 < 35	5.0	
MUSTANG LOW MOA -	2000	MUSTANG LOW - ALTERNATIVE 2 -
H60_3 UH60A	< 35.0	
MUSTANG LOW MOA -	2000	MUSTANG LOW - ALTERNATIVE 2- A10
A-10A < 35	5.0	

Specific Point: R3008A POI Top 20 contributors to this level:

Total Level 40.6

	Sound Leve	1	
<	Airsp.	ace	> Mission
Aircraft	(dB)	HA(%)	
R3008AB			R3008AB - EXISTING - A10 2
A-10A	56.2	3.9	
R3008AB			R3008AB - EXISTING - F35
F-35A	49.5	1.5	
R3008AB			R3008AB - EXISTING - A10_3
A-10A	49.2	1.5	
R3008AB			R3008AB - EXISTING - H60_2
UH60A	47.9	1,2	
R3008AB			R3008AB - EXISTING - C130_2
C 1207	AE 7	0.0	- Table 1

0.4

R3008AB			R3008AB - EXISTING - A10
A-10A	42,7	0.6	
R3008AB			R3008AB - EXISTING - H60 3
UH60A	39.6	0,4	
R3008AB			R3008AB - EXISTING - A29 3
T-6	38.5	0.3	
R3008AB			R3008AB - EXISTING - C130 3
C-1303	38.3	0.3	Printer of the state of the sta
R3008AB			R3008AB - EXISTING - C130
C-130J	36.1	0.2	
R3008AB			R3008AB - EXISTING - H60
UH60A	< 35.0		
LATN			LATN - EXISTING - A10_2
A-10A	₹ 35.0		
R3008AB			R3008AB - EXISTING - A29_2
T-6	< 35.0		
LATN			LATH - EXISTING - C130_2
C-130J	₹ 35.0		
LATN			LATN - EXISTING - H60_2
UH60A	< 35.0		
LATN			LATN - EXISTING - A10_3
A-10A	< 35.0		
SABRE MOA			SABRE - EXISTING - F35
F-35A	< 35.0		
LATN			LATN - EXISTING - C130_3
C-130J	< 35.0		
LATN			LATN - EXISTING - H60_3
UH60A	₹ 35.0		
LATN			LATN - EXISTING - C130
C 1207	< 35.0		

Specific Point: R3008B POI Top 20 contributors to this level:

	Sound Leve	1		
<	Airsp.	ace	>	Mission
Aircraft	(dB)	HA(%)		
R3008AB				R3008AB - EXISTING - A10_2
A-10A	57.1	4.4		
R3008AB				R3008AB - EXISTING - F35
F-35A	50.5	1.8		
R3008AB				R3008AB - EXISTING - A10_3
A-10A	50.3	1.7		
R3008AB				R3008AB - EXISTING - H60_2

1.5 1.1 0.7 0.5 0.4 0.4 0.3	R3008AB - EXISTING - C130_2 R3008AB - EXISTING - A10 R3008AB - EXISTING - H60_3 R3008AB - EXISTING - A29_3
0.7 0.5 0.4 0.4	R3008AB - EXISTING - A10
0.7 0.5 0.4 0.4	R3008AB - EXISTING - H60_3
0.5 0.4 0.4	R3008AB - EXISTING - H60_3
0.5 0.4 0.4	
0.4 0.4	
0.4 0.4	R3008AB - EXISTING - A29_3
0.4	R3008AB - EXISTING - A29_3
0.4	
177.75	
177.75	R3008AB - EXISTING - C130_3
Ð. 3	
0.3	R3008AB - EXISTING - C130
	R3008AB - EXISTING - H60
	R3008AB - EXISTING - A29_2
	HAWG S - ALTERNATIVE 2 - A10_2
	HAWG N - ALTERNATIVE 2 - A10_2
	HANG S - ALTERNATIVE 2 - A10_3
	HANG N - ALTERNATIVE 2 - A10_3
	R3008AB - EXISTING - A29
	HANG S - ALTERNATIVE 2 - F18
	HAWG N - ALTERNATIVE 2 - F18
	HANG S - ALTERNATIVE 2 - A10

Specific Point: R3008C POI Top 20 contributors to this level:

Sound Level Airspace > Mission Aircraft (dB) HA(%) GRAND BAY MOA AND R3008C R3008C - ALTERNATIVE 2 - A10_2 A-10A 46.8 1.1 GRAND BAY MOA AND R3008C R3008C - ALTERNATIVE 2 - F35 F-35A 40.2 0.4

```
R3008C - ALTERNATIVE 2 - A10
    GRAND BAY MOA AND R3008C
       A-10A
                                0.4
    GRAND BAY MOA AND R3008C
                                                  R3008C - ALTERNATIVE 2 - A10_3
       A-10A
                    40.0
                                0.4
    GRAND BAY MOA AND R3008C
                                                  R3008C - ALTERNATIVE 2 - H60_2
       UH6@A
                    38.8
                                0.3
    GRAND BAY MOA AND R3008C
                                                  R3008C - ALTERNATIVE 2 - C130_2
       C-1303
                    37.9
                                0.3
    GRAND BAY MOA AND R3008C
                                                  R3008C - ALTERNATIVE 2 - C130
       C-130J
                    37.4
                                0.3
    GRAND BAY MOA AND R3008C
                                                  R3008C - ALTERNATIVE 2 - H60_3
       UH60A
                  ₹ 35.0
    GRAND BAY MOA AND R3008C
                                                  R3008C - ALTERNATIVE 2 - C130_3
       C-130J
                 ₹ 35.0
    GRAND BAY MOA AND R3008C
                                                  R3008C - ALTERNATIVE 2 - A29_3
       T-6
                  < 35.0
    HAWG SOUTH MOA
                                                  HANG 5 - ALTERNATIVE 2 - A10_2
       A-10A
                  ₹ 35.0
    GRAND BAY MOA AND R3008C
                                                  R3008C - ALTERNATIVE 2 - H60
       UH60A
                  ₹ 35.0
    GRAND BAY MOA AND R3008C
                                                  R3008C - ALTERNATIVE 2 - A29_2
       T-6
                  < 35.0
    HAWG SOUTH MOA
                                                  HANG S - ALTERNATIVE 2 - A10 3
       A-10A
                  < 35.0
    HANG SOUTH MOA
                                                  HANG S - ALTERNATIVE 2 - F18
       F-18A/C
                 < 35.0
    GRAND BAY MOA AND R3008C
                                                  R3008C - ALTERNATIVE 2 - A29
       T-6
                  ₹ 35.0
    HANG SOUTH MOA
                                                  HANG S - ALTERNATIVE 2 - A10
       A-10A
                 ₹ 35.0
    R3008AB
                                                  R3008AB - EXISTING - A10_2
       A-10A
                  < 35.0
    R3008AB
                                                  R3008AB - EXISTING - F35
       F-35A
                  < 35.0
                                                  R3008AB - EXISTING - A10_3
    R3008AB
       A-10A
                  < 35.0
Total Level ......
                                     1.7
                         50.1
    Specific Point: SABRE POI
    Top 20 contributors to this level:
                 Sound Level
                      Airspace
                                               > Mission
       Aircraft
                    (dB)
                               HA(%)
    LATN
                                                  LATN - EXISTING - A10_2
```

A-10A	< 35,0	
LATN		LATN - EXISTING - C130_2
C-1300	< 35.0	
LATN		LATN - EXISTING - H60_2
UH60A	< 35.0	
LATN		LATN - EXISTING - A10_3
A-10A	< 35.0	
SABRE MOA		SABRE - EXISTING - F35
F-35A	< 35.0	
LATN		LATN - EXISTING - C130_3
C-130J	< 35.0	
LATN		LATN - EXISTING - H60_3
UH60A	< 35.0	
LATN		LATN - EXISTING - C130
C-130J	< 35.0	
LATN		LATN - EXISTING - A10
A-10A	< 35.0	
SABRE MOA		SABRE - EXISTING - F18
F-18A/C	< 35.0	
LATN		LATN - EXISTING - H60
UH60A	< 35.0	
R3008AB		R3008AB - EXISTING - A10_2
A-10A	< 35.0	
R3008AB		R3008AB - EXISTING - F35
F-35A	< 35.0	
R3008AB		R3008AB - EXISTING - A10 3
A-10A	< 35.0	
R3008AB		R3008AB - EXISTING - H60 2
UH60A	< 35.0	
R3008AB		R3008AB - EXISTING - C130 2
C-130J	< 35.0	
GRAND BAY MOA	AND R3008C	R3008C - ALTERNATIVE 2 - A10 2
A-10A	< 35.0	
R3008AB		R3008AB - EXISTING - A10
A-10A	< 35.0	
MOODY 2 NORTH	MOA - 100	MOODY 2N - ALTERNATIVE 2 - A10 2
A-10A	< 35.0	
		PROCESS FATCETING MCC 2
R3008AB		R3008AB - EXISTING - H60 3

C-172

Total Level < 35.0

Specific Point: THUD POI Top 20 contributors to this level:

Sound Level

<	Airspace		> Mission
Aircraft	(dB)	HA(%)	
THUD LOW MOA			THUD - ALTERNATIVE 2 - F35
F-35A	40.4	0.4	
LATN			LATN - EXISTING - A10_2
A-10A	< 35.0		
THUD LOW MOA			THUD - ALTERNATIVE 2 - A10_2
A-10A	< 35.0		STREET, MARKET AND THE SECTION OF STREET
LATN			LATN - EXISTING - C130_2
C-130J	< 35.0		
LATN			LATN - EXISTING - H60 2
UH60A	< 35.0		
LATN			LATN - EXISTING - A10 3
A-10A	₹ 35.0		
THUD LOW MOA			THUD - ALTERNATIVE 2 - A10 3
A-10A	< 35.0		
LATN			LATN - EXISTING - C130 3
C-130J	< 35.0		40000 000 0000000000000000000000000000
THUD LOW MOA			THUD - ALTERNATIVE 2 - F18
F-18A/C	< 35.0		
LATN			LATN - EXISTING - H60_3
UH60A	< 35.0		
LATN			LATN - EXISTING - C130
C-1303	< 35.0		
LATN			LATN - EXISTING - A10
A-10A	< 35.0		
THUD LOW MOA			THUD - ALTERNATIVE 2 - A10
A-10A	< 35.0		
LATN			LATN - EXISTING - H60
UH60A	< 35.0		
R3008AB			R3008AB - EXISTING - A10 2
A-10A	< 35.0		
R3008AB	2011/23		R3008AB - EXISTING - F35
	< 35.0		
R3008AB			R3008AB - EXISTING - A10 3
	< 35.0		
R3008AB	0.000 0.000		R3008AB - EXISTING - H60 2
	< 35.0		
R3008AB			R3008AB - EXISTING - C130 2
	< 35.0		
GRAND BAY MOA			R3008C - ALTERNATIVE 2 - A10 2
A-10A	< 35.0		TOOLS OF LEMONT IT E MAY E

Specific Point: WARHAWK POI Top 20 contributors to this level:

41.4

0.5

Total Level

Soi	und Level					
<	Airspace		>	Mission		
Aircraft		HA(%)				
WARHAWK MOA	3 3			WARHAWK	- ALTERNATIVE 2 -	F35
F-35A	37.0	0.3				
MARHAWK LOW MOA	- 2000			WARHAWK	LOW - ALTERNATIVE	2- A10 2
A-10A <	35.0					
WARHAWK MOA				WARHANK	- ALTERNATIVE 2 -	A10 2
A-10A <	35.0					
WARHAWK LOW MOA	- 2000			WARHAWK	LOW - ALTERNATIVE	2- A10 3
A-10A <	35.0					
WARHAWK MOA				WARHANK	- ALTERNATIVE 2 -	A10_3
A-10A <	35.0					
WARHAWK LOW MOA	- 2000			WARHAWK	LOW - ALTERNATIVE	2- F18
F-18A/C <	35.0					
WARHAWK MOA				WARHAMIC	- ALTERNATIVE 2 -	F18
F-18A/C <	35.0					
WARHAWK LOW MOA	- 2000			WARHAWK	LOW - ALTERNATIVE	2 -
C130_2 C-130J	₹ 35.0					
WARHAWK LOW MOA				WARHAWK	LOW - ALTERNATIVE	2- A10
A-10A <	35.0					
WARHAWK LOW MOA	- 2000			WARHAWK	LOW - ALTERNATIVE	2 -
H60_2 UH60A	< 35.0					
WARHAWK LOW MOA	- 2000			WARHAUK	LOW - ALTERNATIVE	2- A29_3
	35.0					
WARHAWK LOW MOA				WARHANK	LOW - ALTERNATIVE	2 -
H60_3 UH60A						
WARHAWK LOW MOA				WARHAUK	LOW - ALTERNATIVE	2 -
C130_3 C-1307	< 35.0					
WARHAWK MOA				WARHAWK	- ALTERNATIVE 2 -	A10
	35,0					
WARHAWK LOW MOA				WARHAWK	LOW - ALTERNATIVE	2 - C130
	35.0					
WARHAWK LOW MOA				WARHAWK	LOW - ALTERNATIVE	2 - H60
1754757331	35.0					
WARHAWK LOW MOA				WARHAWK	LOW - ALTERNATIVE	2- A29_2
	35.0					
WARHAWK LOW MOA				WARHAWK	LOW - ALTERNATIVE	2- A29
	35.0				10707047884848484 FE-	
R3008AB				R3008AB	- EXISTING - A10_3	2
A-10A ∢	35.0			2000000000		
R3008AB	0.50			R3008AB	- EXISTING - F35	
F-35A <	35.0					

0.3

Appendix C C-174

Total Level 38.8

<Run Log>

Date: 7/24/2020 Start Time: 11: 9:20
Stop Time: 11:24:31
Total Running Time: 15 minutes and 12 seconds.

C-175 Appendix C

```
***** MOA RANGE NOISEMAP *****
                           Version 3.0
                  Release Date
                                     2/7/2013
                        CASE INFORMATION
Case Name: Moody AFB SUA - Existing Scenario
Site Name: Moody SUA Complex
                         SETUP PARAMETERS
Number of MOAs and Ranges = 28
                                    Number of tracks = 0
Lower Left Corner of Grid in feet (X Y pair) = -300000., -325000.
Upper Right Corner of Grid in feet (X Y pair) = 300000., 325000.
Grid spacing = 2500. feet Number of events above an SEL of 65.0 dB
Temperature = 59 F
                         Humidity = 70
                                            Flying days per month = 30
                       MOA SPECIFICATIONS
MOA name CORSAIR NORTH LOW MOA - 1000
    Lat
               Long
    (deg)
               (deg)
  31.50029 -84.10001
  31.37945
            -84.03334
  31.30028
            -84.01945
  31.00000
            -83.88306
  31.00000
            -83.46695
  31.33334
            -83,56390
  31.50029
            -84.10001
Floor = 1000 feet AGL
                             Ceiling =
                                           8000 feet AGL
MOA name CORSAIR NORTH LOW MOA - 2000
     Lat
               Long
    (deg)
               (deg)
  31.50029
            -84.10001
  31.37945
            -84.03334
  31.30028
            -84.01945
  31.00000
             83.88306
  31.00000
            -83.46695
  31.33334
            -83.56390
  31.50029
            -84.10001
          2000 feet AGL
Floor =
                             Ceiling =
                                           8000 feet AGL
MOA name CORSAIR NORTH LOW MOA - 4000
     Lat
               Long
    (deg)
               (deg)
  31.50029
             -84,10001
```

Appendix C C-176

-84.03334

-84.01945

31.37945

31.30028

```
31.00000
            -83,88306
  31.00000 -83.46695
  31.33334 -83.56390
  31.50029
           -84,10001
Floor =
          4000 feet AGL
                            Ceiling =
                                        8000 feet AGL
MOA name CORSAIR NORTH MOA
              Long
    Lat
    (deg)
               (deg)
  31.50029
            -84.10001
  31.37945
            -84.03334
  31.30028
            -84.01945
  31.00000
            -83.88306
 31.00000
            -83,46695
            -83.56390
 31.33334
  31.50029 -84.10001
                            Ceiling - 18000 feet AGL
Floor -
          8000 feet AGL
MOA name CORSAIR SOUTH LOW MOA - 1000
              Long
    (deg)
               (deg)
 31.00000
            83.88306
 31.00000
           -83.46695
 30.61666
            -83.35555
 30.63362
           -83.71666
  31.00000
           -83.88306
                                         8000 feet AGL
Floor =
          1000 feet AGL
                            Ceiling =
MOA name CORSAIR SOUTH LOW MOA - 2000
    Lat
              Long
    (deg)
              (deg)
 31.00000
            -83.88306
  31.00000
            -83,46695
  30.61666
            -83.35555
 30.63362
            -83.71666
            -83,88306
 31.00000
Floor =
                            Ceiling =
                                         8000 feet AGL
          2000 feet AGL
MOA name CORSAIR SOUTH LOW MOA - 4000
              Long
    Lat
    (deg)
              (deg)
  31.00000
            -83.88306
  31.00000
           -83.46695
  30.61666
           -83,35555
  30.63362
            -83.71666
  31.00000
           -83,88306
Floor -
          4000 feet AGL
                            Ceiling - 8000 feet AGL
MOA name CORSAIR SOUTH MOA
     Lat
              Long
```

```
(deg)
               (deg)
  31.00000
             -83.88306
  31.00000
             -83,46695
  30.61666
             -83.35555
  30.63362
             -83.71666
  31.00000
             -83,88306
                             Ceiling = 18000 feet AGL
Floor =
           8000 feet AGL
MOA name GRAND BAY MOA AND R3008C
     Lat
               Long
               (deg)
    (deg)
  31.06694
             -83.01666
  30.85027
             -83.01666
  30.85027
             -83.13333
  30.89194
             -83.14999
  30.90861
             -83,10000
  31.02527
             -83,09999
  31.03361
             -83,14999
  31.06694
             -83.13333
  31.06694
             -83.01666
            100 feet AGL
                             Ceiling -
                                          8000 feet AGL
Floor -
MOA name HANG NORTH MOA
     Lat
               Long
    (deg)
               (deg)
  31.38306
             -83.16111
  30.95028
             -83.14139
  30.95028
             -82.64999
  31.21695
             -82,64999
  31.31140
            -82.74305
  31.38306
            -83.16111
Floor -
           8000 feet AGL
                             Ceiling -
                                         18000 feet AGL
MOA name HAWG SOUTH MOA
     Lat
               Long
    (deg)
               (deg)
  30.95028
             -83.14139
  30.60583
            -83.12556
  30.58361
             -82.64972
  30.95028
             -82.64999
  30.95028
            -83.14139
Floor =
           8000 feet AGL
                             Ceiling = 18000 feet AGL
MOA name LATN
     Lat
               Long
    (deg)
               (deg)
  32.06279
             -83.90001
  31.50029
             -84,10001
  30.63362
             -83,71666
  30.60583
             -83.12556
```

```
31.38306
           -83,16111
  32.06279
           -83,48334
  32.06279 -83.90001
           100 feet AGL
                            Ceiling -
                                         8000 feet AGL
Floor -
MOA name MOODY 2 NORTH MOA
     Lat
              Long
    (deg)
               (deg)
  30.95028
            -83.01666
  30.95028
           -82.64999
  31.02667
            -82.64999
  31.23362
            -82.81666
  31.30028
            -82.85000
  31.35028
            -83.01666
  30.95028
           -83.01666
           500 feet AGL
                            Ceiling =
                                         8000 feet AGL
MOA name MOODY 2 NORTH MOA - 100
     Lat
              Long
    (deg)
               (deg)
  30.95028
           -83.01666
  30.95028
            82.64999
  31.02667
            -82.64999
  31.23362
            -82.81666
  31.30028
            -82.85000
  31.35028
            -83.01666
  30.95028
            -83.01666
Floor =
           100 feet AGL
                            Ceiling =
                                         8000 feet AGL
MOA name MOODY 2 SOUTH MOA
     Lat
              Long
    (deg)
               (deg)
  30.95028
            -83,01666
  30.60305
            -83.01666
  30.58361
             -82.64999
  30.95028
            -82,64999
  30.95028
            -83.01666
                            Ceiling =
           100 feet AGL
                                         8000 feet AGL
MOA name MUSTANG LOW MOA - 1000
     Lat
              Long
    (deg)
              (deg)
  32.07196
           -83.59445
  31.56834
            -83.63195
  31.49445
            -83.38334
  31.97196
            -83,39389
  32.06279
            -83,48334
  32.07196
            -83,59445
                            Ceiling -
                                         8000 feet AGL
Floor -
          1000 feet AGL
```

```
MOA name MUSTANG LOW MOA - 2000
               Long
    Lat
    (deg)
               (deg)
 32.07196
             -83.59445
 31.56834
             -83.63195
  31.49445
             -83.38334
 31.97196
             -83.39389
 32.06279
            -83.48334
 32.07196
             -83.59445
Floor =
           2000 feet AGL
                             Ceiling =
                                          8000 feet AGL
MOA name MUSTANG LOW MOA - 4000
     Lat
               Long
    (deg)
               (deg)
  32.07196
             -83.59445
 31.56834
            -83,63195
 31.49445
            -83.38334
 31.97196
            -83,39389
 32.06279
            -83,48334
 32.07196
             -83.59445
          4000 feet AGL
                             Ceiling - 8000 feet AGL
Floor -
MOA name MUSTANG MOA
    Lat
    (deg)
               (deg)
  32.07196
            -83.59445
 31.56834
            -83.63195
 31.49445
            -83.38334
            -83,39389
 31.97196
  32.06279
            -83.48334
  32.07196
            -83,59445
Floor -
          8000 feet AGL
                             Ceiling - 18000 feet AGL
MOA name R3008AB
     Lat
               Long
    (deg)
               (deg)
  30.89194
             -83.14999
  30.90861
            -83.10000
 31.02527
             -83.09999
 31.03361
             -83.14999
  30.98694
            -83.16669
 30.95997
             -83.18475
  30.94738
            -83.16674
 30.89194
            -83,14999
Floor =
           100 feet AGL
                             Ceiling =
                                          8000 feet AGL
MOA name R3008C
     Lat
               Long
    (deg)
               (deg)
 31.06694
             -83.01666
```

```
30.85027
             -83,01666
  30.85027
            -83,13333
  30.89194
            -83,14999
  30.90861
            -83,10000
  31.02527
             -83.09999
  31.03361
             -83.14999
 31.06694
             -83.13333
 31.06694
            -83.01666
Floor =
            500 feet AGL
                             Ceiling =
                                          8000 feet AGL
MOA name SABRE MOA
    Lat
              Long
    (deg)
               (deg)
  31.68751
             -84.03334
 31.50029
            -84.10001
 31.33334
            -83,56390
 30.61666
            -83.35555
  30,60583
            -83,12556
 31.38306
            -83.16111
 31.49445
             83.38334
 31.68751
            -84.03334
           8000 feet AGL
                            Ceiling = 18000 feet AGL
Floor =
MOA name THUD LOW MOA
    Lat
              Long
    (deg)
              (deg)
  32.07196
            -83.59445
 32.08363
            -83.73751
 32.06279
            -83.90001
 31.68751
            -84.03334
 31.56834
            -83.63195
  32.07196
            -83.59445
           4000 feet AGL
Floor =
                            Ceiling =
                                         8000 feet AGL
MOA name THUD MOA
    Lat
              Long
    (deg)
               (deg)
 32.07196
            -83.59445
 32.08363
            -83.73751
 32.06279
            -83.90001
  31.68751
            -84.03334
 31.56834
             -83.63195
            -83.59445
  32.07196
Floor =
           8000 feet AGL
                            Ceiling = 18000 feet AGL
MOA name WARHAWK LOW MOA - 1000
    Lat
              Long
    (deg)
               (deg)
  31.97196
             -83.39389
 31.49445
            -83.38334
```

```
31.38306 -83.16111
  31.31140
          -82.74305
  31.97196 -83.39389
Floor - 1000 feet AGL
                            Ceiling -
                                        8000 feet AGL
MOA name WARHAWK LOW MOA - 2000
    Lat
              Long
    (deg)
              (deg)
  31.97196
            -83,39389
 31.49445
            -83.38334
 31.38306
            -83.16111
  31.31140
            -82.74305
  31.97196
            -83.39389
Floor = 2000 feet AGL
                            Ceiling =
                                        8000 feet AGL
MOA name WARHAWK LOW MOA - 4000
    Lat
              Long
    (deg)
              (deg)
 31.97196
            -83,39389
  31.49445
            -83.38334
 31.38306
            -83.16111
 31.31140
            82.74305
  31.97196
            -83.39389
Floor =
          4000 feet AGL
                            Ceiling =
                                       8000 feet AGL
MOA name WARHAWK MOA
    Lat
    (deg)
              (deg)
  31.97196
            -83,39389
  31.49445
           -83.38334
 31.38306
           -83,16111
 31.31140
           -82.74305
  31.97196 -83.39389
Floor - 8000 feet AGL
                            Ceiling - 18000 feet AGL
                 SPECIFIC POINT SPECIFICATION
Number of Specific points = 11
 Latitude
            Longitude
                           Name
  31.21328
            -83.74600
                          CORSAIR N POI
  30.81517
            -83.60754
                          CORSAIR 5 POI
 31.10161
            -82.86792
                          MOODY2N POI
  30.76693
           -82.84566
                          MOODY25 POI
            -83,49074
  31.74683
                          MUSTANG POI
  30.95783
            -83.16461
                          R3008A POI
  30.95604
            -83.12070
                          R3008B POI
  30.94930
            -83.05738
                          R3008C POI
  31.32796
            -83,38621
                          SABRE POI
  31.85989
            -83.76024
                          THUD POI
 31.58464
            -83.20150
                          WARHAWK POI
```

```
MISSION DATA
Mission name - CORSAIR N - EXISTING - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                       86.0
          Altitude Distribution
                Upper Alt
    Lower Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
     8000
                 23000
                             100.0
Mission name = CORSAIR N - EXISTING - A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                       93.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
     8000
                 23000
                             100.0
Mission name = CORSAIR N - EXISTING - A10_3
Aircraft code -FM0090102 Speed - 350 kias Power -
                                                       97.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
                (feet AGL)
   (feet AGL)
                            Utilization
     8000
                 23000
                             100.0
Mission name = CORSATR N - EXISTING - A29
Aircraft code =FM0870100 Speed = 120 kias Power =
                                                       30.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL) Utilization
     8000
                 23000
                             100.0
Mission name - CORSAIR N - EXISTING - A29_2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                       55.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
                (feet AGL)
   (feet AGL)
                            Utilization
     8000
                 23000
                             100.0
Mission name = CORSAIR N - EXISTING - A29_3
Aircraft code =FM0870102 Speed = 220 kias Power =
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
     8000
                 23000
                             100.0
```

```
Mission name - CORSAIR N - EXISTING - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                          80.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                (feet AGL)
                              Utilization
      8000
                  23000
                               100.0
Mission name = CORSAIR S - EXISTING - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                          86.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                (feet AGL)
                              Utilization
      8000
                  23000
                               100.0
Mission name = CORSAIR S - EXISTING - A10_2
Aircraft code -FM0090101 Speed - 250 kias Power -
                                                         93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                (feet AGL)
                              Utilization
      8000
                  23000
                              100.0
Mission name = CORSATR S - EXISTING - A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                         97.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                                Percent
   (feet AGL)
                (feet AGL)
                              Utilization
      8000
                  23000
                               100.0
Mission name - CORSAIR S - EXISTING - A29
Aircraft code =FM0870100 Speed = 120 kias Power =
                                                         30.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                (feet AGL)
                              Utilization
      8000
                  23000
                              100.0
Mission name = CORSAIR S - EXISTING - A29_2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                          55.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                               100.0
Mission name = CORSAIR S - EXISTING - A29_3
```

```
Aircraft code =FM0870102 Speed = 220 kias Power = 100.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
      8000
                  23000
                              100.0
Mission name = CORSAIR S - EXISTING - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                        80.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                             Utilization
                              100.0
      8000
                  23000
Mission name = HAWG N - EXISTING - A10
Aircraft code -FM0090100 Speed - 180 kias Power -
                                                        86.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name = HAWG N - EXISTING - A10 2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                       93.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name - HAWG N - EXISTING - A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                       97.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
Mission name = HAWG N - EXISTING - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
           Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name = HAWG S - EXISTING - A10
Aircraft code -FM0090100 Speed - 180 kias Power -
           Altitude Distribution
```

```
Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name - HAWG S - EXISTING - A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                        93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name = HAWG S - EXISTING - A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                        97.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
Mission name = HAWG S - EXISTING - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name = LATN - EXISTING - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                        86.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = LATN - EXISTING - A10 2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                        93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
```

```
Mission name - LATN - EXISTING - A10 3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                        97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                             Utilization
                (feet AGL)
       100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = LATN - EXISTING - C130
Aircraft code =FM0290400 Speed = 150 kias Power = 800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                             Utilization
                (feet AGL)
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = LATN - EXISTING - C130_2
Aircraft code =FM0290401 Speed = 220 kias Power = 1800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                               5.0
      1000
                   3000
                               15.0
                   5000
      3000
                               30.0
      5000
                   8000
                               50.0
Mission name = LATN - EXISTING - C130_3
Aircraft code -FM0290402 Speed - 250 kias Power - 4700.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = LATN - EXISTING - H60
Aircraft code -FM6210100 Speed -
                                   70 kias Power -
                                                         0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
```

```
100
                    1000
                                25.0
      1000
                    3000
                                 70.0
      3000
                    5000
                                  5.0
Mission name - LATN - EXISTING - H60_2
Aircraft code =FM6210101 Speed = 130 kias Power =
                                                            0.0
           Altitude Distribution
    Lower Alt
                  Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
       100
                    1000
                                25.0
      1000
                    3000
                                 70.0
      3000
                    5000
                                  5.0
Mission name = LATN - EXISTING - H60 3
Aircraft code -FM6210101 Speed - 130 kias Power -
                                                            0.0
           Altitude Distribution
                  Upper Alt
    Lower Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                               Utilization
       100
                    1000
                                25.0
      1000
                    3000
                                70.0
      3000
                    5000
                                  5.0
Mission name = MOODY 2N - EXISTING - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                           86.0
           Altitude Distribution
                  Upper Alt
    Lower Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                               Utilization
       500
                    1000
                                  5.0
      1000
                    3000
                                  5.0
      3000
                    5000
                                 30.0
      5000
                    8000
                                 60.0
Mission name = MOODY 2N - EXISTING - A10 2
Aircraft code =FM0090101 Speed = 250 kias Power =
           Altitude Distribution
    Lower Alt
                  Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                               Utilization
       500
                    1000
                                  5.0
      1000
                    3000
                                  5.0
      3000
                    5000
                                 30.0
      5000
                    8000
                                 60.0
Mission name = MOODY 2N - EXISTING - A10_3
Aircraft code -FM0090102 Speed - 350 kias Power -
           Altitude Distribution
```

Lower Alt				
(feet AGL)	(feet AGL)	Utilization		
500	1000	5.0		
1000	3000	5.0		
3000	5000	30.0		
5000	8000	60.0		
Fig. 1000 124 (0.7 0.00 (0.8)	100111000100000000000000000000000000000			
Mission name =				
	=FM0870100 S∣ itude Distrib	peed = 120 kias ution	Power =	30.0
Lower Alt	Upper Alt	Percent		
(feet AGL)	(feet AGL)	Utilization		
500	1000	5.0		
1000	3000	5.0		
3000	5000	30.0		
5000	8000	60.0		
Name of the second				
		XISTING - A29_2	₩000000000000	
		peed - 180 kias	Power -	55.0
	itude Distrib			
Lower Alt	Upper Alt			
(feet AGL)	(feet AGL)	Utilization		
500	1000	5.0		
1000	3000	5.0		
3000 5000	5000	30.0 60.0		
5000	8000	60.0		
Mission name =	MOODY 2N - EX	XISTING - A29 3		
Aircraft code -	-FM0870102 S	peed - 220 kias	Power -	100.0
Alt:	itude Distrib	ution		
Lower Alt	Upper Alt			
(feet AGL)	(feet AGL)	Utilization		
500	1000	5.0		
1000	3000	5.0		
3000	5000	30.0		
5000	8000	60.0		
Mission name =	MOODY 2N - E	VISTING _ C120		
		peed = 150 kias	Power -	800 0
	itude Distrib		roner -	500.0
	Upper Alt			
(feet AGL)	(feet AGL)	Utilization		
500	1000	5.0		
1000	3000	15.0		
3000	5000	30.0		
5000	8000	50.0		

```
Mission name = MOODY 2N - EXISTING - C130_2
Aircraft code -FM0290401 Speed - 220 kias Power - 1800.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = MOODY 2N - EXISTING - C130_3
Aircraft code =FM0290402 Speed = 250 kias Power = 4700.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = MOODY 2N - EXISTING - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                        80.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                                5.0
                   5000
      3000
                               10.0
      5000
                   8000
                               80.0
Mission name - MOODY 2N - EXISTING - H60
Aircraft code =FM6210100 Speed = 70 kias Power =
                                                         0.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                               25.0
      1000
                   3000
                               70.0
      3000
                   5000
                                5.0
Mission name = MOODY 2N - EXISTING - H60_2
Aircraft code -FM6210102 Speed - 100 kias Power -
                                                         0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
```

```
500
                   1000
                               25.0
      1000
                   3000
                               70.0
      3000
                   5000
                                5.0
Mission name - MOODY 2N - EXISTING - H60_3
Aircraft code =FM6210101 Speed = 130 kias Power =
                                                          0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
                (feet AGL)
   (feet AGL)
                             Utilization
       500
                   1000
                               25.0
      1000
                   3000
                               70.0
      3000
                   5000
                                5.0
Mission name = MOODY 2S - EXISTING - A10
Aircraft code -FM0090100 Speed - 180 kias Power -
                                                         86.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = MOODY 2S - EXISTING - A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                         93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
                   1000
       500
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = MOODY 2S - EXISTING - A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                         97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                               60.0
Mission name - MOODY 2S - EXISTING - A29
Aircraft code =FM0870100 Speed = 120 kias Power =
                                                         30.0
```

Altitude Distribution

```
Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = MOODY 2S - EXISTING - A29_2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                         55.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                                5.0
                   5000
                               30.0
      3000
      5000
                   8000
                               60.0
Mission name - MOODY 2S - EXISTING - A29_3
Aircraft code =FM0870102 Speed = 220 kias Power = 100.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name - MOODY 2S - EXISTING - C130
Aircraft code =FM0290400 Speed = 150 kias Power =
                                                       800.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = MOODY 2S - EXISTING - C130 2
Aircraft code =FM0290401 Speed = 220 kias Power = 1800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
```

30.0

```
5000
                    8000
                                50.0
Mission name - MOODY 2S - EXISTING - C130_3
Aircraft code =FM0290402 Speed = 250 kias Power = 4700.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
       500
                    1000
                                  5.0
      1000
                    3000
                                15.0
      3000
                    5000
                                30.0
      5000
                    8000
                                50.0
Mission name = MOODY 2S - EXISTING - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
       500
                    1000
                                  5.0
      1000
                    3000
                                  5.0
      3000
                    5000
                                10.0
      5000
                    8000
                                80.0
Mission name = MOODY 2S - EXISTING - H60
Aircraft code =FM6210100 Speed =
                                     70 kias Power =
                                                            0.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
       500
                    1000
                                25.0
      1000
                    3000
                                70.0
      3000
                    5000
                                  5.0
Mission name - MOODY 2S - EXISTING - H60_2
Aircraft code =FM6210102 Speed = 100 kias Power =
                                                            0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
       500
                    1000
                                25.0
      1000
                    3000
                                70.0
                                  5.0
      3000
                    5000
Mission name = MOODY 2S - EXISTING - H60_3
Aircraft code -FM6210101 Speed - 130 kias Power -
                                                            0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
```

```
500
                  1000
                              25.0
      1000
                   3000
                               70.0
      3000
                   5000
                               5.0
Mission name - MUSTANG - EXISTING - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                       86.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
      8000
                  23000
                             100.0
Mission name = MUSTANG - EXISTING - A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                       93.0
          Altitude Distribution
                Upper Alt
    Lower Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
      8000
                 23000
Mission name = MUSTANG - EXISTING - A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                       97.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
      8000
                 23000
                             100.0
Mission name = MUSTANG - EXISTING - F35
Aircraft code =FM0890200 Speed = 350 kias Power =
                                                        75.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
      8000
                 23000
                             100.0
Mission name = MUSTANG - EXISTING - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                       80.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                 23000
                             100.0
Mission name = R3008AB - EXISTING - A10
Aircraft code -FM0090100 Speed - 180 kias Power -
                                                       86.0
          Altitude Distribution
    Lower Alt
                Upper Alt
                              Percent
   (feet AGL)
                (feet AGL)
                            Utilization
```

```
100
                   1000
                                 5.0
      1000
                   3000
                                 5.0
                   5000
      3000
                                30.0
      5000
                   8000
                                60.0
Mission name = R3008AB - EXISTING - A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                         93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                               60.0
Mission name = R3008AB - EXISTING - A10_3
Aircraft code -FM0090102 Speed - 350 kias Power -
                                                         97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                                60.0
Mission name = R3008AB - EXISTING - A29
Aircraft code =FM0870100 Speed = 120 kias Power =
           Altitude Distribution
                 Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                                60.0
Mission name = R3008AB - EXISTING - A29 2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                         55.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                                60.0
```

```
Mission name = R3008AB - EXISTING - A29 3
Aircraft code -FM0870102 Speed - 220 kias Power - 100.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name = R3008AB - EXISTING - C130
Aircraft code =FM0290400 Speed = 150 kias Power = 800.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = R3008AB - EXISTING - C130 2
Aircraft code =FM0290401 Speed = 220 kias Power = 1800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name - R3008AB - EXISTING - C130_3
Aircraft code =FM0290402 Speed = 250 kias Power = 4700.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = R3008AB - EXISTING - F35
Aircraft code =FM0890200 Speed = 350 kias Power =
                                                        75.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       100
                   1000
                                5.0
```

```
1000
                   3000
                                5.0
      3000
                   5000
                               10.0
      5000
                   8000
                               80.0
Mission name - R3008AB - EXISTING - H60
Aircraft code =FM6210100 Speed =
                                   70 kias Power =
                                                         0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
                (feet AGL)
   (feet AGL)
                             Utilization
       100
                   1000
                               25.0
      1000
                   3000
                               70.0
      3000
                   5000
                                5.0
Mission name = R3008AB - EXISTING - H60 2
Aircraft code -FM6210102 Speed - 100 kias Power -
                                                         0.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                               25.0
      1000
                   3000
                               70.0
      3000
                   5000
                                5.0
Mission name = R3008AB - EXISTING - H60 3
Aircraft code =FM6210102 Speed = 130 kias Power =
                                                         0.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      100
                   1000
                               25.0
      1000
                   3000
                               70.0
      3000
                   5000
                                5.0
Mission name - R3008C - EXISTING - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                         86.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               30.0
      5000
                   8000
                               60.0
Mission name - R3008C - EXISTING - A10_2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                        93.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
```

```
(feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                                60.0
Mission name = R3008C - EXISTING - A10_3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                         97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                              Utilization
       500
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                                60.0
Mission name - R3008C - EXISTING - A29
Aircraft code =FM0870100 Speed = 120 kias Power =
                                                         30.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                              Utilization
       500
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                               60.0
Mission name = R3008C - EXISTING - A29 2
Aircraft code =FM0870101 Speed = 180 kias Power =
                                                         55.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                              Utilization
       500
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                                60.0
Mission name = R3008C - EXISTING - A29 3
Aircraft code =FM0870102 Speed = 220 kias Power =
                                                        100.0
           Altitude Distribution
    Lower Alt
                               Percent
                 Upper Alt
   (feet AGL)
                (feet AGL)
                              Utilization
       500
                   1000
                                 5.0
      1000
                   3000
                                 5.0
      3000
                   5000
                                30.0
      5000
                   8000
                                60.0
```

```
Mission name - R3008C - EXISTING - C130
Aircraft code =FM0290400 Speed = 150 kias Power =
                                                       800.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = R3008C - EXISTING - C130_2
Aircraft code =FM0290401 Speed = 220 kias Power = 1800.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
                             Utilization
   (feet AGL)
                (feet AGL)
       500
                   1000
                                5.0
      1000
                   3000
                               15.0
      3000
                   5000
                               30.0
      5000
                   8000
                               50.0
Mission name = R3008C - EXISTING - C130_3
Aircraft code =FM0290402 Speed = 250 kias Power = 4700.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                               5.0
      1000
                   3000
                               15.0
                   5000
      3000
                               30.0
      5000
                   8000
                               50.0
Mission name = R3008C - EXISTING - F35
Aircraft code -FM0890200 Speed - 350 kias Power -
                                                        75.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
       500
                   1000
                                5.0
      1000
                   3000
                                5.0
      3000
                   5000
                               10.0
      5000
                   8000
                               80.0
Mission name = R3008C - EXISTING - H60
Aircraft code -FM6210100 Speed - 70 kias Power -
                                                         0.0
           Altitude Distribution
    Lower Alt
                Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
```

```
500
                   1000
                               25.0
      1000
                   3000
                               70.0
      3000
                   5000
                                5.0
Mission name - R3008C - EXISTING - H60_2
Aircraft code =FM6210102 Speed = 110 kias Power =
                                                         0.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
                (feet AGL)
   (feet AGL)
                             Utilization
       500
                   1000
                               25.0
      1000
                   3000
                               70.0
      3000
                   5000
                                5.0
Mission name = R3008C - EXISTING - H60 3
Aircraft code -FM6210101 Speed - 130 kias Power -
                                                         0.0
           Altitude Distribution
                Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      500
                   1000
                               25.0
      1000
                   3000
                               70.0
      3000
                   5000
                                5.0
Mission name = SABRE - EXISTING - F18
Aircraft code =FM0450100 Speed = 350 kias Power =
                                                        80.0
           Altitude Distribution
                Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
Mission name - SABRE - EXISTING - F35
Aircraft code =FM0890200 Speed = 350 kias Power =
                                                        75.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                             100.0
Mission name = THUD - EXISTING - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                        86.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                               Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                              100.0
```

Mission name = THUD - EXISTING - A10_2

```
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                         93.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                (feet AGL)
                             Utilization
      8000
                  23000
                               100.0
Mission name = THUD - EXISTING - A10 3
Aircraft code =FM0090102 Speed = 350 kias Power =
                                                          97.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                 (feet AGL)
                              Utilization
                               100.0
      8000
                  23000
Mission name = THUD - EXISTING - F18
Aircraft code -FM0450100 Speed - 350 kias Power -
                                                          80.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                               Percent
   (feet AGL)
                (feet AGL)
                              Utilization
      8000
                  23000
                               100.0
Mission name = THUD - EXISTING - F35
Aircraft code =FM0890200 Speed = 350 kias Power =
                                                         75.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                (feet AGL)
                              Utilization
      8000
                  23000
                               100.0
Mission name - WARHAWK - EXISTING - A10
Aircraft code =FM0090100 Speed = 180 kias Power =
                                                          86.0
           Altitude Distribution
    Lower Alt
                 Upper Alt
                                Percent
   (feet AGL)
                (feet AGL)
                              Utilization
      8000
                  23000
Mission name = WARHAWK - EXISTING - A10 2
Aircraft code =FM0090101 Speed = 250 kias Power =
                                                          93.0
           Altitude Distribution
                 Upper Alt
    Lower Alt
                                Percent
   (feet AGL)
                (feet AGL)
                              Utilization
      8000
                  23000
                               100.0
Mission name = WARHAWK - EXISTING - A10_3
Aircraft code -FM0090102 Speed - 350 kias Power -
           Altitude Distribution
```

Lower Alt	Upper Alt	Percent
(feet AGL)	(feet AGL)	Utilization
8000	23000	100.0

Mission name - WARHANK - EXISTING - F18
Aircraft code =FM0450100 Speed = 350 kias Power = 80.0
Altitude Distribution
Lower Alt Upper Alt Percent
(feet AGL) (feet AGL) Utilization
8000 23000 100.0

Mission name = WARHANK - EXISTING - F35
Aircraft code =FM0890200 Speed = 350 kias Power = 75.0
Altitude Distribution
Lower Alt Upper Alt Percent
(feet AGL) (feet AGL) Utilization
8000 23000 100.0

MOA OPERATION DATA MOA name = CORSAIR NORTH MOA

Daily Monthly Yearly Mission Day Night. Day Night Day Night Time On Range OPS OPS OPS OPS OPS OPS (minutes) CORSAIR N - EXISTING - A10 3.739 0.417 112.17 12,50 1346. 150. 12. CORSAIR N - EXISTING - A10 2 3.739 0.417 112.17 12.50 1346. 150. 42. CORSAIR N - EXISTING - A10_3 3.739 0.417 112.17 12.50 1346. 150. CORSAIR N - EXISTING - A29 0.467 0.025 14.00 0.75 9. 168. 8. CORSAIR N - EXISTING - A29_2 0.467 0.025 14.00 0.75 168. 9. CORSAIR N - EXISTING - A29 3 0.467 0.025 14.00 0.75 9. 25. 168. 0.619 0.033 18.58 CORSAIR N - EXISTING - F18 1.00 223. 12. 33.

Daily

MOA name = CORSAIR SOUTH MOA

Yearly

Monthly

	Mission			Day	Night	Day
Night	Day Name	Night	Time On Range	OPS	OPS	OPS
OPS	OPS	OPS	(minutes)			
	CORSAIR S	- EXISTING -	A10	2.242	0.250	67.25
7.50	807.	90.	12.			
	CORSAIR S	- EXISTING -	A10_2	2.242	0.250	67.25
7.50		90.	42.			
		- EXISTING -	10 (10 (00 10 (0))	2.242	0.250	67.25
7.50		90.	6.			
		EXISTING - A		1.389	0.072	41.67
2.17		26.	8.			
		EXISTING - A		1.389	0.072	41.67
2.17		26.	47.	contention.	200222	10000000
		EXISTING - A	100 to 100 000	1.389	0.072	41.67
2.17		26.	24.	1211223	2012/201	
2 88		EXISTING - H		0.864	0.044	25.92
1,33	311.	16.	30.			
1	MOA name - H	AWG NORTH MO	A C			
				Dai	ly	
Month:	ly	Yearly				
	Mission			Day	Night	Day
Night	Day	Night	Time On Range			
	Name			OPS	OPS	OPS
OPS	OPS	OPS	(minutes)			
		ISTING - A10		7.850	0.872	235.50
26.17		314.	10.			
		ISTING - A10	7	7.850	0.872	235.50
26.17		314.	35.			
		ISTING - A10	₹ 168	7.850	0.872	235.50
26,17		314.	5.			
		ISTING - F18		0.194	0.011	5.83
0.33	70.	4.	116.			
3	MOA name = H	AWG SOUTH MOX	4			
				Dai	ly	
Month.	ly	Yearly				
	Mission			Day	Night	Day
Night	Day	Night	Time On Range			
	Name			OPS	OPS	OPS
OPS	OPS	OPS	(minutes)			
	HANG 5 - EX	ISTING - A10		7.850	0.872	235.50
26.17	2826.	314.	10.			
		ISTING - A10	-0.00	7.850	0.872	235.50
26.17		314.	35.			
		ISTING - A10		7.850	0.872	235.50
26.17	2826.	314.	5.			

	HAWG S - EXISTIN	VG - F18		0.194	0.011	5.83
0.33	70.	4.	116.			
29	MOA name = LATN					
	HOR Halle = LATH			Dail	V	
Month:	lv	Yearly			2	
	Mission	1.0001001		Day	Night	Day
Night		Night 1	ime On Range		583	
	Name			OPS	OPS	OPS
OPS	OPS	OPS	(minutes)			
	LATN - EXISTING	- A10		7.850	0.872	235.50
26.17	2826.	314.	2.			
	LATN - EXISTING	- A10_2		7.850	0.872	235.50
26.17	2826.	314.	8.			
	LATN - EXISTING	- A10_3		7.850	0.872	235.50
26.17	2826.	314.	1.			
	LATN - EXISTING	- C130		1.419	1.336	42.58
40.08	511.	481.	3.			
	LATN - EXISTING	- C130_2		1.419	1.336	42.58
40,08	511.	481.	24.			
	LATN - EXISTING	- C130_3		1.419	1.336	42.58
40.08	511.	481.	3.			
	LATN - EXISTING	- H60		2.961	0.786	88.83
23.58	1066.	283.	2.			
	LATN - EXISTING	- H60_2		2.961	0.786	88.83
23.58	1066.	283.	25.			
	LATN - EXISTING	- H60_3		2.961	0.786	88.83
23.58	1066.	283.	4.			
1	MOA name - MOODY	2 NORTH MO)A	88 98		
	4 7720	1200 000 1200 T		Dail	y	
Month.		Yearly				
	Mission			Day	Night	Day
Night		Night 1	ime On Range	one	055	005
CORC	Name	ione	Zastanotono V	OPS	OPS	OPS
OPS	OPS	OPS	(minutes)	7 950	0.973	225 50
26 47	MOODY 2N - EXIST		7400	7.850	0.872	235.50
26.17	2826.	314.	4.	7.850	0.872	235.50
26.17	MOODY 2N - EXIST 2826.	314.	14.	7.850	0.872	233.30
20.17	MOODY 2N - EXIST			7.850	0.872	235.50
26.17		314.	2.	7.030	0.072	233.30
20.17	MOODY 2N - EXIST		2.	1.850	0.097	55.50
2,92		35.	16.	1.030	M+M21	22.30
2.32	MOODY 2N - EXIST			1.850	0.097	55.50
2.92		35.	52.	1.050	2,021	23.30
	MOODY 2N - EXIST			1,850	0.097	55.50
2.92	666.	35.	18.			
857.876.50	500000	C-100 To 1	147-03-032			

MOODY 2N - EXISTING - C130	0.378	0.356	11.33
10.67 136. 128. 3.			
MOODY 2N - EXISTING - C130_2	0.378	0.356	11.33
10,67 136. 128. 24.			
MOODY 2N - EXISTING - C130_3	0.378	0.356	11.33
10.67 136. 128. 3.			
MOODY 2N - EXISTING - F18	1.400	0.075	42.00
2.25 504. 27. 43.			
MOODY 2N - EXISTING - H60	1.972	0.525	59.17
15.75 710. 189. 8.			
MOODY 2N - EXISTING - H60_2	1.972	0.525	59.17
15.75 710. 189. 124.			
MOODY 2N - EXISTING - H60_3	1.972	0.525	59.17
15.75 710. 189. 18.			
MOA name - MOODY 2 SOUTH MOA			
Total Land Total Land Total	Dai	1v	
Monthly Yearly	2.70	56	
Mission	Day	Night	Day
Night Day Night Time On Range		13.77 P 0.000	77.4
Name	OPS	OPS	OPS
OPS OPS (minutes)			
MOODY 2S - EXISTING - A10	7.850	0.872	235.50
26.17 2826. 314. 4.			
MOODY 25 - EXISTING - A10 2	7.850	0.872	235.50
26.17 2826. 314. 14.			
MOODY 2S - EXISTING - A10_3	7.850	0.872	235.50
26.17 2826. 314. 2.			
MOODY 25 - EXISTING - A29	1.911	0.100	57.33
3,00 688. 36. 16.			
MOODY 2S - EXISTING - A29_2	1.911	0.100	57.33
3,00 688, 36, 52,			
MOODY 2S - EXISTING - A29_3	1.911	0.100	57.33
3.00 688. 36. 18.			
MOODY 2S - EXISTING - C130	0.378	0.356	11.33
10.67 136. 128. 3.			
MOODY 2S - EXISTING - C130_2	0.378	0.356	11.33
10.67 136. 128. 24.			
MOODY 2S - EXISTING - C130_3	0.378	0.356	11.33
10.67 136. 128. 3.	12112-020	0.00000	100000000
MOODY 2S - EXISTING - F18	1.369	0.072	41.08
2.17 493. 26. 43.			
MOODY 25 - EXISTING - H60	1.972	0.525	59.17
15.75 710. 189. 8.	4.070	0.505	50.07
MOODY 25 - EXISTING - H60_2	1.972	0.525	59.17
15.75 710. 189. 124.	1 073	0 535	EG 12
MOODY 25 - EXISTING - H60 3	1.972	0.525	59.17
15.75 710. 189. 18.			

11.50 1242. 138. 12. MUSTANG - EXISTING - A10_2 3.450 0.383 11.50 1242. 138. 42.	Day OPS 103.50 103.50 103.50 22.75 37.17
Mission Day Night Time On Range Name OPS OPS OPS OPS (minutes) MUSTANG - EXISTING - A10 3.450 0.383 11.50 1242. 138. 12. MUSTANG - EXISTING - A10_2 3.450 0.383 11.50 1242. 138. 42. MUSTANG - EXISTING - A10_3 3.450 0.383 11.50 1242. 138. 6. MUSTANG - EXISTING - F35 0.758 0.039 1.17 273. 14. 38. MUSTANG - EXISTING - F18 1.239 0.064	OPS 103.50 103.50 103.50 22.75
Night Day Night Time On Range Name OPS OPS OPS OPS (minutes) MUSTANG - EXISTING - A10 3.450 0.383 11.50 1242. 138. 12. MUSTANG - EXISTING - A10_2 3.450 0.383 11.50 1242. 138. 42. MUSTANG - EXISTING - A10_3 3.450 0.383 11.50 1242. 138. 6. MUSTANG - EXISTING - F35 0.758 0.039 1.17 273. 14. 38. MUSTANG - EXISTING - F18 1.239 0.064	OPS 103.50 103.50 103.50 22.75
Name OPS OPS OPS OPS (minutes) MUSTANG = EXISTING - A10 3.450 0.383 11.50 1242 138 12 MUSTANG = EXISTING - A10 2 3.450 0.383 11.50 1242 138 42 MUSTANG = EXISTING - A10 3 3.450 0.383 11.50 1242 138 6 MUSTANG = EXISTING - F35 0.758 0.039 1.17 273 14 38 MUSTANG = EXISTING - F18 1,239 0.064	103.50 103.50 103.50 22.75
OPS OPS OPS (minutes) MUSTANG - EXISTING - A10 3.450 0.383 11.50 1242. 138. 12. MUSTANG - EXISTING - A10_2 3.450 0.383 11.50 1242. 138. 42. MUSTANG - EXISTING - A10_3 3.450 0.383 11.50 1242. 138. 6. MUSTANG - EXISTING - F35 0.758 0.039 1.17 273. 14. 38. MUSTANG - EXISTING - F18 1.239 0.064	103.50 103.50 103.50 22.75
MUSTANG - EXISTING - A10 3.450 0.383 1.50 1242. 138. 12. MUSTANG - EXISTING - A10_2 3.450 0.383 1.50 1242. 138. 42. MUSTANG - EXISTING - A10_3 3.450 0.383 1.50 1242. 138. 6. MUSTANG - EXISTING - F35 0.758 0.039 1.17 273. 14. 38. MUSTANG - EXISTING - F18 1.239 0.064	103.50 103.50 22.75
MUSTANG - EXISTING - A10_2 3.450 0.383 11.50 1242. 138. 42. MUSTANG - EXISTING - A10_3 3.450 0.383 11.50 1242. 138. 6. MUSTANG - EXISTING - F35 0.758 0.039 1.17 273. 14. 38. MUSTANG - EXISTING - F18 1.239 0.064	103.50 22.75
11.50	103.50 22.75
11.50	22.75
11.50 1242. 138. 6. MUSTANG - EXISTING - F35 0.758 0.039 1.17 273. 14. 38. MUSTANG - EXISTING - F18 1.239 0.064	22.75
MUSTANG - EXISTING - F35 0.758 0.039 1.17 273. 14. 38. MUSTANG - EXISTING - F18 1.239 0.064	
1.17 273. 14. 38. MUSTANG - EXISTING - F18 1.239 0.064	
1.17 273. 14. 38. MUSTANG - EXISTING - F18 1.239 0.064	37.17
	37.17
MOA name = R3008AB Daily	
Monthly Yearly	
Mission Day Night	Day
Night Day Night Time On Range	
Name OPS OPS	OPS
OPS OPS (minutes)	
R3008AB - EXISTING - A10 7.850 0.872	235.50
26.17 2826. 314. 10.	
R3008AB - EXISTING - A10_2 7.850 0.872	235.50
26.17 2826. 314. 34.	
R3008AB - EXISTING - A10_3 7.850 0.872	235.50
26,17 2826. 314. 5.	
R3008AB - EXISTING - A29 2.761 0.144	82.83
4.33 994. 52. 3.	
R3008AB - EXISTING - A29_2 2.761 0.144	82.83
4.33 994. 52. 15.	
R3008AB - EXISTING - A29_3 2.761 0.144	82.83
4.33 994. 52. 7.	
R3008AB - EXISTING - C130 0.378 0.356	11.33
10.67 136. 128. 12.	
R3008AB - EXISTING - C130_2 0.378 0.356	11.33
10.67 136. 128. 96.	
R3008AB - EXISTING - C130_3 0.378 0.356	11.33
10.67 136. 128. 12.	
R3008AB - EXISTING - F35 0.031 0.003	0.92
0.08 11. 1. 32.	
R3008AB - EXISTING - H60 1.972 0.525	59.17
15.75 710. 189. 6.	
R3008AB = EXISTING = H60_2 1.972 0.525	59.17

15,75	710.	189.	99.			
	R3008AB - EXI	ISTING - H64	ð_3	1.972	0.525	59.17
15.75	710.	189.	15.			
ı	MOA name - R30	308C				
				Dai	ly	
Florith.	ly	Yearly				
	Mission			Day	Night	Day
Night	Day	Night	Time On Range			
	Name			OPS	OPS	OPS
OPS	OPS	OPS	(minutes)			
	R3008C - EXIS			7.850	0.872	235.50
26,17		314.	2.			
	R3008C - EXIS	STING - A10		7.850	0.872	235.50
26.17		314.	8.			
	R3008C - EXIS	STING - A10		7.850	0.872	235.50
26.17		314.	1.			
	R3008C - EXIS	STING - A29		2.761	0.144	82.83
4.33		52.	1.			
	R3008C - EXIS			2.761	0.144	82.83
4.33		52.	4.			
	R3008C - EXIS	STING - A29		2.761	0.144	82.83
4.33	994.	52.	2.			
	R3008C - EXIS	STING - C130		0.378	0.356	11.33
10.67		128.	3.			
	R3008C - EXIS		THE CO. LEWIS CO	0.378	0.356	11.33
10.67	136.	128.	24.			
	R3008C - EXIS			0.378	0.356	11.33
10.67	136.	128.	3.			
	R3008C - EXIS	STING - F35		0.031	0.003	0.92
0.08	11.	1.	8.			
	R3008C - EXI	STING - H60		1.972	0.525	59.17
15,75	710.	189.	2.			
	R3008C - EXIS	STING - H60_		1.972	0.525	59.17
15,75		189.	25.			
	R3008C - EXIS		- 7000	1.972	0.525	59.17
15.75	710.	189.	4.			
,	MOA name = SAN	BRE MOA				
				Dai	ly	
Month.	ly	Yearly				
	Mission			Day	Night	Day
Night	S 2012 C 1	Night	Time On Range			
	Name			OPS	OPS	OPS:
OPS	OPS	OPS	(minutes)			
	SABRE - EXIST	TING - F18		0.864	0.044	25.92
1.33		16.	32.			
	SABRE - EXIST	TING - F35		0.047	0.003	1.42

17. 1.

0,08

				Dai	.ly	
Month:	Carlo Company of the	Yearly				
-3558	Mission	33 33		Day	Night	Day
Night	10000 1000 000 000 000 000 000 000 000	Night	Time On Range	1000000	2000000	100000
1000000	Name	The second		OPS	OPS	OPS
OPS	OPS	OPS	(minutes)	10.000	07000	
200022	THUD - EXISTING		890	3.450	0.383	103.50
11.50	1242.	138.	12.			
	THUD - EXISTING	- A10_2		3.450	0.383	103.50
11.50	1242.	138.	42.			
	THUD - EXISTING	- A10_3		3.450	0.383	103.56
11.50	1242.	138.	6.			
	THUD - EXISTING	- F18		1.042	0.056	31.29
1.67	375,	20.	30.			
	THUD - EXISTING	- F35		0.778	0.042	23.33
1.25	280.	15.	38.			
	MOA name = WARHA			Dai	.ly	
	ly	WK MOA Yearly			55	D
Month:	ly Mission	Yearly	The Or Bonne	Dai Day	ly Night	Day
	ly Mission Day		Time On Range	Day	Night	20050
Month: Night	ly Mission Day Name	Yearly Night	= = = = = = = = = = = = = = = = = = = =		55	20050
Month:	ly Mission Day Name OPS	Yearly Night OPS	(minutes)	Day OPS	Night OPS	Day OPS
Month Night OPS	ly Mission Day Name OPS WARHAWK - EXIST	Yearly Night OPS ING - Al	(minutes)	Day	Night	OPS.
Month: Night	ly Mission Day Name OPS WARHAWK - EXIST	Yearly Night OPS ING - A1	(minutes) 0	Day OPS 3.450	Night OPS 0.383	0PS
Month: Night OPS 11.50	ly Mission Day Name OPS WARHAWK - EXIST 1242. WARHAWK - EXIST	Yearly Night OPS ING - A10 138. ING - A10	(minutes) 0 12. 0_2	Day OPS	Night OPS	OPS.
Month Night OPS	ly Mission Day Name OPS WARHAWK - EXIST 1242. WARHAWK - EXIST	Yearly Night OPS ING - A10 138. ING - A10 138.	(minutes) 0 12. 0_2 42.	Day OPS 3.450 3.450	Night OPS 0.383 0.383	0PS 103.56 103.56
Month: Night OPS 11.50	ly Mission Day Name OPS WARHAWK - EXIST 1242. WARHAWK - EXIST 1242. WARHAWK - EXIST	Yearly Night OPS ING - A1 138. ING - A1 138. ING - A1	(minutes) 0 12. 0_2 42.	Day OPS 3.450	Night OPS 0.383	0PS
Month: Night OPS 11.50	ly Mission Day Name OPS WARHAWK - EXIST 1242. WARHAWK - EXIST 1242. WARHAWK - EXIST	Yearly Night OPS ING - A1: 138. ING - A1: 138. ING - A1: 138.	(minutes) 0 12. 0_2 42. 0_3 6.	Day OPS 3.450 3.450 3.450	Night OPS 0.383 0.383 0.383	OPS 103.56 103.56
Month: Night OPS 11.50 11.50	Nission Day Name OPS WARHAWK - EXIST 1242. WARHAWK - EXIST 1242. WARHAWK - EXIST 1242. WARHAWK - EXIST	Yearly Night OPS ING - A1- 138. ING - A1- 138. ING - A1- 138. ING - FI	(minutes) 0 12. 0_2 42. 0_3 6.	Day OPS 3.450 3.450	Night OPS 0.383 0.383	0PS 103.56 103.56
Month: Night OPS 11.50	Nission Day Name OPS WARHAWK - EXIST 1242. WARHAWK - EXIST 1242. WARHAWK - EXIST 1242. WARHAWK - EXIST 1242. WARHAWK - EXIST	Yearly Night OPS ING - A1- 138. ING - A1- 138. ING - A1- 138. ING - F1 25.	(minutes) 0 12. 0_2 42. 0_3 6. 8 30.	Day OPS 3.450 3.450 3.450 1.336	Night OPS 0.383 0.383 0.383	0PS 103.50 103.50 103.50
Month: Night OPS 11.50 11.50	Nission Day Name OPS WARHAWK - EXIST 1242. WARHAWK - EXIST 1242. WARHAWK - EXIST 1242. WARHAWK - EXIST	Yearly Night OPS ING - A1- 138. ING - A1- 138. ING - A1- 138. ING - F1 25.	(minutes) 0 12. 0_2 42. 0_3 6. 8 30.	Day OPS 3.450 3.450 3.450	Night OPS 0.383 0.383 0.383	OPS 103.56 103.56

the recommended grid spacing is less than 1000 feet.

40.

***** MOA RANGE NOISEMAP ***** RESULTS

The noise metric is Ldnmr.

OF MOA MOA MOA DISTRIBUTED DAILY EVENTS ABOVE NAME NAME AREA SOUND LEVEL SEL OF SEL O					MOA R	ESU	LTS		
MOA						U	niform	1	lumber
Name Name Area Sound Level SEL of	of								
Name		MOA			MOA	Di	stributed	Da	aily
CORSAIR NORTH LOW MOA - 1000 CORSAIR NORTH LOW MOA - 2000 T55.3 No operations on this moal corsair North Low MOA - 2000 T55.3 No operations on this moal corsair North Low MOA - 2000 T55.3 No operations on this moal corsair North Low MOA - 4000 T55.3 No operations on this moal corsair North MOA - 1000 T55.3 No operations on this moal corsair South Low MOA - 1000 T55.3 No operations on this moal corsair South Low MOA - 2000 T55.3 No operations on this moal corsair South Low MOA - 2000 T55.3 No operations on this moal corsair South Low MOA - 2000 T55.3 No operations on this moal corsair South Low MOA - 2000 T55.3 No operations on this moal corsair South MOA - 2000 T55.0 T55.3 No operations on this moal corsair South MOA - 2000 T55.0 T55.3 No operations on this moal corsair South MOA - 2000 T55.0 T55.	Event	ts Above							
(sq statute miles) (dB)		Name			Area	So	und Level	SI	L of
CORSAIR NORTH LOW MOA - 1000 755.3 No operations on this	65.0	dB							
MOA! CORSAIR NORTH LOW MOA - 2000 755.3 No operations on this MOA! CORSAIR NORTH LOW MOA - 4000 755.3 No operations on this MOA! CORSAIR NORTH MOA 755.3 35.0 0.0 CORSAIR SOUTH LOW MOA - 1000 591.9 No operations on this MOA! CORSAIR SOUTH LOW MOA - 2000 591.9 No operations on this MOA! CORSAIR SOUTH LOW MOA - 4000 591.9 No operations on this MOA! CORSAIR SOUTH MOA 591.9 35.0 0.0 GRAND BAY MOA AND R3008C 89.2 No operations on this MOA! HAWG NORTH MOA 704.3 35.0 0.0 LATN 4200.0 35.0 0.0 MOODY 2 NORTH MOA 100 420.7 44.1 0.0 MOODY 2 NORTH MOA 100 420.7 No operations on this MOA! MOODY 2 SOUTH MOA 100 420.7 No operations on this MOA! MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 470.3 No operations on this MOSTANG MOA 470.3 No operations on this					(sq statute mile	5)	(dB)		
CORSAIR NORTH LOW MOA - 2000 755.3 No operations on this MOA! CORSAIR NORTH LOW MOA - 4000 755.3 No operations on this MOA! CORSAIR NORTH MOA 755.3 35.0 0.0 CORSAIR SOUTH LOW MOA - 1000 591.9 No operations on this MOA! CORSAIR SOUTH LOW MOA - 2000 591.9 No operations on this MOA! CORSAIR SOUTH LOW MOA - 4000 591.9 No operations on this MOA! CORSAIR SOUTH MOA 591.9 No operations on this MOA! CORSAIR SOUTH MOA 591.9 No operations on this MOA! HAMG NORTH MOA 799.1 35.0 0.0 0.0 HAMG SOUTH MOA 704.3 35.0 0.0 0.0 HAMG SOUTH MOA 704.1 0.0 MOODY 2 NORTH MOA 100 420.7 No operations on this MOOA! MOODY 2 NORTH MOA 100 420.7 No operations on this MOA! MOODY 2 SOUTH MOA 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA - 4000 470.3 No operations on this MOA!		CORSAIR NORTH LOW	MOA -	1000	755.3	No	operations	on	this
MOA! CORSAIR NORTH LOW MOA - 4000 755.3 No operations on this MOA! CORSAIR NORTH MOA 755.3 35.0 0.0 CORSAIR SOUTH LOW MOA - 1000 591.9 No operations on this MOA! CORSAIR SOUTH LOW MOA - 2000 591.9 No operations on this MOA! CORSAIR SOUTH LOW MOA - 4000 591.9 No operations on this MOA! CORSAIR SOUTH MOA 591.9 No operations on this MOA! CORSAIR SOUTH MOA 591.9 35.0 0.0 GRAND BAY MOA AND R3008C 89.2 No operations on this MOA! HAWG NORTH MOA 779.1 35.0 0.0 HAWG SOUTH MOA 704.3 35.0 0.0 HAWG SOUTH MOA 704.3 35.0 0.0 MOODY 2 NORTH MOA 420.0 35.0 0.0 MOODY 2 NORTH MOA 420.7 44.1 0.0 MOODY 2 NORTH MOA 100 420.7 No operations on this MOA! MOODY 2 SOUTH MOA 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA - 4000 470.3 No operations on this	MOA!								
CORSAIR NORTH LOW MOA - 4000 755.3 No operations on this MOA! CORSAIR SOUTH LOW MOA - 1000 591.9 No operations on this MOA! CORSAIR SOUTH LOW MOA - 2000 591.9 No operations on this MOA! CORSAIR SOUTH LOW MOA - 4000 591.9 No operations on this MOA! CORSAIR SOUTH MOA - 4000 591.9 No operations on this MOA! CORSAIR SOUTH MOA 591.9 35.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6		CORSAIR NORTH LOW	MOA -	2000	755.3	No	operations	on	this
MOA! CORSAIR NORTH MOA	MOA!								
CORSAIR NORTH MOA CORSAIR SOUTH LOW MOA - 1000 591.9 No operations on this MOA! CORSAIR SOUTH LOW MOA - 2000 591.9 No operations on this MOA! CORSAIR SOUTH LOW MOA - 4000 591.9 No operations on this MOA! CORSAIR SOUTH MOA 591.9 35.0 6.0 GRAND BAY MOA AND R3008C 89.2 No operations on this MOA! HAWG NORTH MOA 779.1 35.0 6.0 HAWG SOUTH MOA 704.3 35.0 6.0 HAWG SOUTH MOA 704.3 35.0 6.0 HAWG SOUTH MOA 4200.0 35.0 0.0 HAWG SOUTH MOA 4200.0 35.0 0.0 HAWG MOODY 2 NORTH MOA 420.7 MO operations on this MOA! MOODY 2 NORTH MOA 1000 420.7 No operations on this MOA! MOODY 2 SOUTH MOA 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 500.0 470.3 No operations on this MOA!		CORSAIR NORTH LOW	MOA -	4000	755.3	No	operations	on	this
MOA! CORSAIR SOUTH LOW MOA - 1000 591.9 No operations on this MOA! CORSAIR SOUTH LOW MOA - 2000 591.9 No operations on this MOA! CORSAIR SOUTH LOW MOA - 4000 591.9 No operations on this MOA! CORSAIR SOUTH MOA 591.9 35.0 0.0 GRAND BAY MOA AND R3008C 89.2 No operations on this MOA! HAWG NORTH MOA 779.1 35.0 0.0 HAWG SOUTH MOA 704.3 35.0 0.0 HAWG SOUTH MOA 4000 35.0 0.0 MOODY 2 NORTH MOA 4000 420.7 No operations on this MOA! MOODY 2 NORTH MOA 100 420.7 No operations on this MOA! MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this	MOA!								
MOA! CORSATR SOUTH LOW MOA - 2000 591.9 No operations on this MOA! CORSATR SOUTH LOW MOA - 4000 591.9 No operations on this MOA! CORSATR SOUTH MOA 591.9 35.0 0.0 GRAND BAY MOA AND R3008C 89.2 No operations on this MOA! HAWG NORTH MOA 779.1 35.0 0.0 HAWG SOUTH MOA 704.3 35.0 0.0 LATN 4200.0 35.0 0.0 LATN 4200.0 35.0 0.0 MOODY 2 NORTH MOA 420.7 44.1 0.0 MOODY 2 NORTH MOA 100 420.7 No operations on this MOA! MOODY 2 SOUTH MOA 536.4 43.1 0.0 MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this		CORSAIR NORTH MOA					35.0		0.0
CORSAIR SOUTH LOW MOA - 2000 591.9 No operations on this MOA! CORSAIR SOUTH LOW MOA - 4000 591.9 No operations on this MOA! CORSAIR SOUTH MOA 591.9 35.0 0.0 GRAND BAY MOA AND R3008C 89.2 No operations on this MOA! HAWG NORTH MOA 779.1 35.0 0.0 1.0 HAWG SOUTH MOA 704.3 35.0 0.0 1.0 HAWG SOUTH MOA 704.3 35.0 0.0 1.0 HAWG SOUTH MOA 4200.0 35.0 0.0 1.0 HAWG SOUTH MOA 4200.0 35.0 0.0 1.0 HOODY 2 NORTH MOA 420.7 44.1 0.0 MOODY 2 NORTH MOA 100 420.7 No operations on this MOA! MOODY 2 SOUTH MOA 536.4 43.1 0.0 HOODY MOSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 470.3 No operations on this MOA! MUSTANG MOA 470.3 No operations on this MOA! MUSTANG MOA 470.3 39.1 0.0 R3008AB		CORSAIR SOUTH LOW	MOA -	1000	591.9	No	operations	on	this
MOA! CORSAIR SOUTH LOW MOA - 4000 591.9 No operations on this MOA! CORSAIR SOUTH MOA 591.9 35.0 0.0 GRAND BAY MOA AND R3008C 89.2 No operations on this MOA! HAWG NORTH MOA 779.1 35.0 0.0 HAWG SOUTH MOA 704.3 35.0 0.0 LATN 4200.0 35.0 0.0 MOODY 2 NORTH MOA 420.7 44.1 0.0 MOODY 2 NORTH MOA 420.7 No operations on this MOA! MOODY 2 SOUTH MOA 420.7 No operations on this MOA! MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 39.1 0.0 R3008AB 34.1 59.7 0.0	MOA!								
CORSAIR SOUTH LOW MOA - 4000 591.9 No operations on this MOA! CORSAIR SOUTH MOA 591.9 35.0 6.0 GRAND BAY MOA AND R3008C 89.2 No operations on this MOA! HAMG NORTH MOA 779.1 35.0 6.0 HAMG SOUTH MOA 704.3 704.3 70.0 HAMG PART PART PART PART PART PART PART PART		CORSAIR SOUTH LOW	MOA -	2000	591.9	No	operations	on	this
MOA! CORSAIR SOUTH MOA 591.9 35.0 6.0 GRAND BAY MOA AND R3008C 89.2 No operations on this MOA! HAWG NORTH MOA 779.1 35.0 0.0 HAWG SOUTH MOA 704.3 4200.0 35.0 0.0 HAWG SOUTH MOA 704.3 420.7 HAVE 70.0 HAVE	MOA!								
CORSAIR SOUTH MOA		CORSATE SOUTH LOW	MOA -	4000	591.9	No	operations	on	this
## GRAND BAY MOA AND R3008C 89.2 No operations on this MOA! HAWG NORTH MOA 779.1 35.0 0.0 HAWG SOUTH MOA 704.3 35.0 0.0 LATN 4200.0 35.0 0.0 MOODY 2 NORTH MOA 420.7 44.1 0.0 MOODY 2 NORTH MOA 100 420.7 No operations on this MOA! MOODY 2 SOUTH MOA 536.4 43.1 0.0 MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA!	MOA!								
MOAN MUSTANG NOA A 779.1 35.0 0.0 HAWG NORTH MOA 779.1 35.0 0.0 HAWG SOUTH MOA 704.3 35.0 0.0 LATN 4200.0 35.0 0.0 MOODY 2 NORTH MOA 4200.7 NO operations on this MOA! MOODY 2 SOUTH MOA 1000 420.7 NO operations on this MOA! MUSTANG LOW MOA - 1000 470.3 NO operations on this MOA! MUSTANG LOW MOA - 2000 470.3 NO operations on this MOA! MUSTANG LOW MOA - 4000 470.3 NO operations on this MOA! MUSTANG MOA 4000 470.3 NO operations on this MOA! MUSTANG MOA 4000 470.3 NO operations on this MOA! MUSTANG MOA 4000 470.3 NO operations on this MOA! MUSTANG MOA 5000 470.3 NO operations on this MOA! MUSTANG MOA 5000 470.3 NO operations on this MOA! MUSTANG MOA 5000 470.3 NO operations on this MOA! MUSTANG MOA 5000 470.3 Source MOA! MUSTANG MOA 5000 470.3 Source MOA! MUSTANG MOA 5000 5000 5000 5000 5000 5000 5000 50									
HAMG NORTH MOA 779.1 35.0 0.0 HAMG SOUTH MOA 704.3 35.0 0.0 LATN 4200.0 35.0 0.0 MOODY 2 NORTH MOA 420.7 44.1 0.0 MOODY 2 NORTH MOA - 100 420.7 No operations on this NOA! MOODY 2 SOUTH MOA 536.4 43.1 0.0 MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 39.1 0.0 R3008AB 34.1 59.7 0.0		GRAND BAY MOA AND	R30080	9	89,2	No	operations	on	this
HAMG SOUTH MOA 704.3 35.0 0.0 LATN 4200.0 35.0 0.0 MOODY 2 NORTH MOA 420.7 44.1 0.0 MOODY 2 NORTH MOA - 100 420.7 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA - 4000 470.3 39.1 0.0 R3008AB 34.1 59.7 0.0	MOA!								
LATN 4200.0 35.0 0.0 MOODY 2 NORTH MOA 420.7 44.1 0.0 MOODY 2 NORTH MOA - 100 420.7 No operations on this MOA! MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 39.1 0.0 R3008AB 34.1 59.7 0.0		HAWG NORTH MOA			779.1		35.0		0.0
MOODY 2 NORTH MOA - 100 420.7 No operations on this MOA! MOODY 2 SOUTH MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA - 4000 470.3 39.1 0.0 R3008AB 34.1 59.7 0.0		HAMG SOUTH MOA			704.3		35.0		0.0
MOODY 2 NORTH MOA - 100 420.7 No operations on this MOA! MOODY 2 SOUTH MOA 536.4 43.1 0.0 MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 39.1 0.0 R3008AB 34.1 59.7 0.0		LATN			4200.0		35.0		0.0
MOODY 2 SOUTH MOA 536.4 43.1 0.0 MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 39.1 0.0 R3008AB 34.1 59.7 0.0		MOODY 2 NORTH MOA			420.7		44.1		0.0
MOODY 2 SOUTH MOA 536.4 43.1 0.0 MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 No operations on this MOA! MUSTANG MOA 470.3 39.1 0.0 R3008AB 34.1 59.7 0.0		MOODY 2 NORTH MOA	- 100		420.7	No	operations	on	this
MUSTANG LOW MOA - 1000 470.3 No operations on this MOA! MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA - 4000 470.3 39.1 0.0 R3008AB 34.1 59.7 0.0	MOA!								
MOA! MUSTANG LOW MOA - 2000									
MUSTANG LOW MOA - 2000 470.3 No operations on this MOA! MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 4000 470.3 39.1 0.0 R3008AB 34.1 59.7 0.0		MUSTANG LOW MOA -	1000		470.3	No	operations	on	this
MOA! MUSTANG LOW MOA - 4000	MOA!								
MUSTANG LOW MOA - 4000 470.3 No operations on this MOA! MUSTANG MOA 470.3 39.1 0.0 R3008AB 34.1 59.7 0.0		MUSTANG LOW MOA -	2000		470.3	No	operations	on	this
MOA! MUSTANG MOA 470.3 39.1 0.0 R3008AB 34.1 59.7 0.0	MOA!								
MUSTANG MOA 470.3 39.1 0.0 R3008AB 34.1 59.7 0.0		MUSTANG LOW MOA -	4000		470.3	No	operations	on	this
R3008AB 34.1 59.7 0.0	MOAT								
		MUSTANG MOA			470.3		39.1		0.0
R3008C 89.2 47.7 0.0		R3008AB			34.1		59.7		0.0
		R3008C			89.2		47.7		0.0

SABRE MOA	1599.8	35.0 0.0
THUD LOW MOA	658.3	No operations on this
MOA!		
THUD MOA	658.3	37.8 0.5
WARHAWK LOW MOA - 1000	682.0	No operations on this
MOAT		
WARHAWK LOW MOA - 2000	682.0	No operations on this
MOA!		
WARHAWK LOW MOA - 4000	682.0	No operations on this
MOA!		
WARHAWK MOA	682.0	37.4 0.4

***** MOA RANGE NOISEMAP ***** RESULTS

SPECIFIC POINT RESULTS

Specific Point: CORSAIR N POI Top 20 contributors to this level:

	Sound Level		
<	Airspa	ce	> Mission
	(dB)		
LATN			LATN - EXISTING - A10_2
A-10A	< 35.0		
LATN			LATN - EXISTING - C130_2
C-130J	< 35.0		
CORSAIR NORT	H MOA		CORSAIR N - EXISTING - A10_2
A-10A	< 35.0		
LATN			LATN - EXISTING - H60_2
UH60A	< 35.0		
LATN			LATN - EXISTING - A10_3
A-10A	₹ 35.0		
CORSAIR NORT	H MOA		CORSAIR N - EXISTING - A10_3
A-10A	₹ 35.0		
LATN			LATN - EXISTING - C130_3
C-130J	< 35.0		
LATN			LATN - EXISTING - H60_3
UH60A	< 35.0		
LATN			LATN - EXISTING - C130
C-130J	< 35.0		
LATN			LATN - EXISTING - A10

A-10A	< 35.0	
CORSAIR NORTH	MOA	CORSAIR N - EXISTING - A29_3
T-6	< 35.0	
CORSAIR NORTH	MOA	CORSAIR N - EXISTING - F18
F-18A/C	< 35.0	
LATN		LATN - EXISTING - H60
UH60A	< 35.0	
CORSAIR NORTH	MOA	CORSAIR N - EXISTING - A29_2
T-6	< 35.0	
CORSAIR NORTH	MOA	CORSAIR N - EXISTING - A10
A-10A	< 35.0	
CORSAIR NORTH	MOA	CORSAIR N - EXISTING - A29
T-6	₹ 35.0	
R3008AB		R3008AB - EXISTING - A10_2
A-10A	< 35.0	
R3008AB		R3008AB - EXISTING - F35
F-35A	< 35.0	
R3008AB		R3008AB - EXISTING - A10_3
A-10A	₹ 35.0	
R3008AB		R3008AB - EXISTING - H60_2
UH60A	< 35.0	

Total Level < 35.0

Specific Point: CORSAIR 5 POI Top 20 contributors to this level:

	Sound Level	1	
<	Airspace		> Mission
Aircraft	(dB)	HA(%)	
LATN			LATN - EXISTING - A10_2
A-10A	< 35.0		
LATN			LATN - EXISTING - C130_2
C-130J	< 35.0		
LATN			LATN - EXISTING - H60_2
UH60A	< 35.0		
CORSAIR SOUTH MOA			CORSAIR S - EXISTING - A10_2
A-10A	< 35.0		
LATN			LATN - EXISTING - A10_3
A-10A	₹ 35.0		
CORSAIR SOUTH MOA			CORSAIR 5 - EXISTING - A29_3
T-6	< 35.0		
LATN			LATN - EXISTING - C130_3
C-130J	< 35.0		
CORSAIR SOUTH MOA			CORSAIR 5 - EXISTING - A10_3
A-10A	< 35.0		

LATN	LATN - EXISTING - H60_3
UH60A < 35.0	
LATN	LATN - EXISTING - C130
C-130J < 35.0	
LATN	LATN - EXISTING - A10
A-10A < 35.0	
CORSAIR SOUTH MOA	CORSAIR S - EXISTING - F18
F-18A/C < 35.0	
CORSAIR SOUTH MOA	CORSAIR S - EXISTING - A29_2
T-6 < 35.0	
LATN	LATN - EXISTING - H60
UH60A < 35.0	
CORSAIR SOUTH MOA	CORSAIR S - EXISTING - A10
A-10A < 35.0	
CORSAIR SOUTH MOA	CORSAIR S - EXISTING - A29
T-6 < 35.0	
R3008AB	R3008AB - EXISTING - A10_2
A-10A < 35.0	
R3008AB	R3008AB - EXISTING - F35
F-35A < 35.0	
R3008AB	R3008AB - EXISTING - A10_3
A-10A < 35.0	
R3008AB	R3008AB - EXISTING - H60_2
UH60A < 35.0	

Total Level < 35.0

Specific Point: MOODY2N POI Top 20 contributors to this level:

	Sound Leve	1	
<	Airspace		Mission
Aircraft	(dB)	HA(%)	
MOODY 2 NORTH	MOA		MOODY 2N - EXISTING - A10_2
A-10A	40.2	0.4	
MOODY 2 NORTH	MOA		MOODY 2N - EXISTING - H60_2
UH60A	38.3	0.3	
MOODY 2 NORTH	MOA		MOODY 2N - EXISTING - A10_3
A-10A	₹ 35.0		
MOODY 2 NORTH	MOA		MOODY 2N - EXISTING - F18
F-18A/C	< 35.0		
MOODY 2 NORTH	MOA		MOODY 2N - EXISTING - H60_3
UH60A	< 35.0		
MOODY 2 NORTH	MOA		MOODY 2N - EXISTING - A29_3
T-6	< 35.0		
MOODY 2 NORTH	MOA		MOODY 2N - EXISTING - C130_2

made of the first of the same	A Property of	
	< 35.0	
HAWG NORTH		HAWG N - EXISTING - A10_2
A-10A	₹ 35,0	
MOODY 2 NOR	TH MOA	MOODY 2N - EXISTING - A10
A-10A	< 35.0	
MOODY 2 NOR	TH MOA	MOODY 2N - EXISTING - C130_
C-1303	< 35.0	
MOODY 2 NOR	TH MOA	MOODY 2N - EXISTING - A29_2
T-6	< 35.0	
400DY 2 NOR	TH MOA	MOODY 2N - EXISTING - H60
UH60A	< 35.0	
HAWG NORTH	MOA	HAWG N - EXISTING - A10 3
A-10A	< 35.0	
MOODY 2 NOR	TH MOA	MOODY 2N - EXISTING - C130
	< 35.0	
HAWG NORTH	MOA	HAWG N - EXISTING - F18
F-18A/C	< 35.0	
MOODY 2 NOR	TH MOA	MOODY 2N - EXISTING - A29
T-6	< 35.0	
HAMG NORTH	MOA	HAWG N - EXISTING - A10
A-10A	< 35.0	
R3008AB		R3008AB - EXISTING - A10_2
A-10A	< 35.0	
R3008AB		R3008AB - EXISTING - F35
F-35A	< 35.0	
R3008AB		R3008AB - EXISTING - A10_3
	< 35.0	

Specific Point: MOODY2S POI Top 20 contributors to this level:

	Sound Level	1		
<	Airspa	ace	Mission	
Aircraft	(dB)	HA(%)		
MOODY 2 SOUTH	AOM H		MOODY 2S - EXISTING - A10_3	2
A-10A	39.1	0.4		
MOODY 2 SOUTH	AOM H		MOODY 2S - EXISTING - H60_1	2
UH60A	37.2	0.3		
MOODY 2 SOUTH	AOM H		MOODY 2S - EXISTING - A10_	3
A-10A	< 35.0			
MOODY 2 SOUTH	I MOA		MOODY 25 - EXISTING - F18	
F-18A/C	₹ 35.0			
MOODY 2 SOUTH	AOM I		MOODY 25 - EXISTING - H60	3
UH60A	< 35.0			

MOODY 2 SOUTH MOA	MOODY 2S - EXISTING - A29 3
T-6 < 35,0	The state of the s
MOODY 2 SOUTH MOA	MOODY 2S - EXISTING - C130_2
C-130J < 35.0	=
HAWG SOUTH MOA	HANG S - EXISTING - A10_2
A-10A < 35.0	
MOODY 2 SOUTH MOA	MOODY 25 - EXISTING - A10
A-10A < 35.0	
HAWG SOUTH MOA	HANG S - EXISTING - A10_3
A-10A < 35.0	
MOODY 2 SOUTH MOA	MOODY 2S - EXISTING - A29_2
T-6 < 35.0	
MOODY 2 SOUTH MOA	MOODY 2S - EXISTING - C130_3
C-1303 < 35.0	
MOODY 2 SOUTH MOA	MOODY 2S - EXISTING - H60
UH60A < 35.0	
MOODY 2 SOUTH MOA	MOODY 25 - EXISTING - C130
C-130J < 35.0	
HAWG SOUTH MOA	HAWG S - EXISTING - F18
F-18A/C < 35.0	
MOODY 2 SOUTH MOA	MOODY 25 - EXISTING - A29
T-6 < 35.0	
HAWG SOUTH MOA	HANG S - EXISTING - A10
A-10A < 35.0	
R3008AB	R3008AB - EXISTING - A10_2
A-10A < 35.0	
R3008AB	R3008AB - EXISTING - F35
F-35A < 35.0	
R3008AB	R3008AB - EXISTING - A10_3
A-10A < 35.0	2007/00/2006 - 12:50 - 2007/2006 - 1007/2006

Specific Point: MUSTANG POI Top 20 contributors to this level:

Total Level 43.3

	Sound Level	I .		
<	Airspa	ice	>	Mission
Aircraft	(dB)	HA(%)		
MUSTANG MOA				MUSTANG - EXISTING - F35
F-35A	38.6	0.3		
LATN				LATN - EXISTING - A10_2
A-10A	< 35.0			
MUSTANG MOA				MUSTANG - EXISTING - A10_2
A-10A	< 35.0			
LATN				LATN - EXISTING - C130_2

0.6

C-130J	< 35.0	
LATN		LATN - EXISTING - H60_2
UH60A	< 35.0	
LATN		LATN - EXISTING - A10_3
A-10A	< 35.0	
MUSTANG MOA		MUSTANG - EXISTING - A10_3
A-10A	< 35.0	
LATN		LATN - EXISTING - C130_3
C-1303	< 35.0	
MUSTANG MOA		MUSTANG - EXISTING - F18
F-18A/C	< 35.0	
LATN		LATN - EXISTING - H60_3
UH60A	< 35.0	
LATN		LATN - EXISTING - C130
C-130J	< 35.0	
LATN		LATN - EXISTING - A10
A-10A	< 35.0	
LATN		LATN - EXISTING - H60
UH60A	< 35.0	
MUSTANG MOA		MUSTANG - EXISTING - A10
A-10A	< 35.0	
R3008AB		R3008AB - EXISTING - A10_2
A-10A	< 35.0	
R3008AB		R3008AB - EXISTING - F35
F-35A	< 35.0	
R3008AB		R3008AB - EXISTING - A10_3
A-10A	< 35.0	and the second s
R3008AB		R3008AB - EXISTING - H60_2
UH60A	₹ 35.0	
R3008AB		R3008AB - EXISTING - C130_2
C-130J	< 35.0	1.8
R3008C		R3008C - EXISTING - A10_2
	₹ 35,0	

Specific Point: R3008A POI Top 20 contributors to this level:

	Sound Leve:	1		
<	Airspa	ace	>	Mission
Aircraft	(dB)	HA(%)		
R3008AB				R3008AB - EXISTING - A10_2
A-10A	56.2	3.9		
R3008AB				R3008AB - EXISTING - F35
E-35A	49.5	1.5		

R3008AB			R3008AB - EXISTING - A10 3
A-10A	49.2	1.5	
R3008AB			R3008AB - EXISTING - H60 2
UH6@A	47.9	1,2	
R3008AB			R3008AB - EXISTING - C130_2
C-130J	45.7	0.9	
R3008AB			R3008AB - EXISTING - A10
A-10A	42.7	0.6	
R3008AB			R3008AB - EXISTING - H60 3
UH60A	39.6	0.4	
R3008AB			R3008AB - EXISTING - A29 3
T-6	38.5	0.3	
R3008AB			R3008AB - EXISTING - C130 3
C-130J	38.3	0.3	
R3008AB			R3008AB - EXISTING - C130
C-1303	36.1	0.2	
R3008AB			R3008AB - EXISTING - H60
UH60A	< 35.0		
LATN			LATN - EXISTING - A10_2
A-10A	< 35.0		
R3008AB	611시간하고 11시		R3008AB - EXISTING - A29_2
T-6	< 35.0		
LATN	V. A. C. B.		LATN - EXISTING - C130 2
C-1303	< 35.0		
LATN			LATN - EXISTING - H60_2
UH60A	< 35.0		
LATN			LATN - EXISTING - A10 3
A-10A	< 35.0		
SABRE MOA			SABRE - EXISTING - F35
F-35A	₹ 35.0		SHORE EXISTING 133
LATN			LATN - EXISTING - C130 3
C-130J	< 35.0		2.111
LATN			LATN - EXISTING - H60 3
UH60A	< 35.0		2777777
LATN			LATN - EXISTING - C130
	< 35.0		EATH EXESTING CEST
2 2303	3 2210		
Total Level	58.	7 5.4	
Specific Po:	int: R3008B	POI	
Top 20 contr	ributors to t	his level:	
	Sound Level		
<	Airspa		> Mission
Aircraft	(dB)	HA(%)	
R3008AB	(32)		R3008AB - EXISTING - A10 2
N. J. OOD MILE			HOUSE ENTOTING MIG_Z

A-10A	57.1	4.4	
R3008AB			R3008AB - EXISTING - F35
F-35A	50.5	1.8	
R3008AB			R3008AB - EXISTING - A10_3
A-10A	50.3	1.7	SPECIAL STATE OF THE SPECIAL S
R3008AB			R3008AB - EXISTING - H60_2
UH60A	49.1	1.5	
R3008AB			R3008AB - EXISTING - C130_2
C-1303	47.3	1.1	
R3008AB			R3008AB - EXISTING - A10
A-10A	43.4	0.7	
R3008AB			R3008AB - EXISTING - H60_3
UH60A	40.8	0.5	
R3008AB			R3008AB - EXISTING - A29_3
T-6	40.0	0.4	
R3008AB			R3008AB - EXISTING - C130 3
C-130J	39.9	0.4	5
R3008AB			R3008AB - EXISTING - C130
C-1303	37.7	0.3	
R3008AB			R3008AB - EXISTING - H60
UH60A	< 35.0		
R3008AB			R3008AB - EXISTING - A29_2
T-6	< 35.0		_
HAWG SOUTH N	40A		HAWG S - EXISTING - A10_2
A-10A	< 35.0		(A)
HANG NORTH N	AOA		HANG N - EXISTING - A10 2
A-10A	< 35.0		
HANG SOUTH N	AON		HANG S - EXISTING - A10 3
A-10A	₹ 35.0		displaying the control of the contro
HANG NORTH N	AOA		HANG N - EXISTING - A10 3
A-10A	< 35.0		- T
R3008AB			R3008AB - EXISTING - A29
T-6	₹ 35.0		
HAWG SOUTH N	40A		HAWG S - EXISTING - F18
F-18A/C	< 35.0		
HAWG NORTH N	4OA		HAWG N - EXISTING - F18
F-18A/C	< 35.0		
HANG SOUTH N			HAWG S - EXISTING - A10

Total Level 59.7 6.2

Specific Point: R3008C POI Top 20 contributors to this level:

Sound Level

<	Airspa	ace	Mission
Aircraft	(dB)	HA(%)	
R3008C	3,772	34 (20) (3.00)	R3008C - EXISTING - A10 2
A-10A	44.6	0.8	
R3008C			R3008C - EXISTING - F35
F-35A	38.5	0.3	
R3008C			R3008C - EXISTING - A10 3
A-10A	38.3	0.3	
R3008C			R3008C - EXISTING - H60 2
UH60A	37.9	0.3	
R3008C			R3008C - EXISTING - C130 2
C-130J	37.1	0.3	_
R3008C			R3008C - EXISTING - H60 3
UH60A	< 35.0		
R3008C			R3008C - EXISTING - A10
A-10A	< 35.0		
R3008C			R3008C - EXISTING - C130 3
C-130J	< 35.0		
R3008C			R3008C - EXISTING - A29 3
T-6	< 35.0		1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974
R3008C			R3008C - EXISTING - C130
C-1303	< 35.0		
HAWG SOUTH MOA			HANG S - EXISTING - A10 2
A-10A	< 35.0		
R3008C			R3008C - EXISTING - H60
UH60A	< 35.0		
HANG SOUTH MOA			HANG S - EXISTING - A10_3
A-10A	< 35.0		
R3008C			R3008C - EXISTING - A29 2
T-6	< 35.0		
HAWG SOUTH MOA			HANG S - EXISTING - F18
F-18A/C	< 35.0		
R3008C			R3008C - EXISTING - A29
T-6	< 35.0		
HAMG SOUTH MOA			HANG S - EXISTING - A10
A-10A	< 35.0		
R3008AB			R3008AB - EXISTING - A10_2
A-10A	< 35.0		13.026.01643 _01740.5400046 5.46406
R3008AB			R3008AB - EXISTING - F35
F-35A	₹ 35.0		
R3008AB			R3008AB - EXISTING - A10 3
A-10A	< 35.0		= 1

1.2

Specific Point: SABRE POI Top 20 contributors to this level:

Total Level 47.7

	Sound Level			2247000
ζ	Airspace	W	,	Mission
Aircraft	(dB)	HA(%)		Figure Engagement (1907)
LATN				LATN - EXISTING - A10_2
A-10A	< 35.0			
LATN	25.0			LATN - EXISTING - C130_2
	< 35.0			LATE EVICTIES USO 2
LATN	25.0			LATN - EXISTING - H60_2
UH60A LATN	< 35.0			
E	25.0			LATN - EXISTING - A10_3
A-10A	< 35.0			EARDE EVICTING EN
SABRE MOA	25.0			SABRE - EXISTING - F35
F-35A	< 35.0			
LATN	A 122 E 122 E 1			LATN - EXISTING - C130_3
C-130J	< 35.0			V and a supposed that a
LATN	1252			LATN - EXISTING - H60_3
UH60A	< 35.0			MARKET ARCHITECTURE PROGRESS
LATN				LATN - EXISTING - C130
	< 35.0			
LATN				LATN - EXISTING - A10
A-10A	< 35.0			
SABRE MOA				SABRE - EXISTING - F18
F-18A/C	< 35.0			
LATN				LATN - EXISTING - H60
UH60A	< 35.0			
R3008AB				R3008AB - EXISTING - A10_2
A-10A	< 35.0			
R3008AB				R3008AB - EXISTING - F35
F-35A	< 35.0			
R3008AB				R3008AB - EXISTING - A10_3
A-10A	₹ 35.0			
R3008AB				R3008AB - EXISTING - H60_2
UH60A	< 35.0			
R3008AB				R3008AB - EXISTING - C130_2
C-130J	₹ 35.0			
R3008C				R3008C - EXISTING - A10 2
A-10A	< 35.0			
R3008AB				R3008AB - EXISTING - A10
A-10A	₹ 35.0			
R3008AB				R3008AB - EXISTING - H60 3
UH60A	₹ 35.0			
R3008AB				R3008AB - EXISTING - A29 3
T-6	< 35.0			

Appendix C C-219

Total Level < 35.0

Specific Point: THUD POI Top 20 contributors to this level:

	Sound Level	l	
<	Airspa	ace	> Mission
Aircraft	(dB)	HA(%)	
THUD MOA			THUD - EXISTING - F35
F-35A	37.4	0.3	
LATN			LATN - EXISTING - A10 2
A-10A	< 35.0		
THUD MOA			THUD - EXISTING - A10_2
A-10A	₹ 35.0		
LATN			LATN - EXISTING - C130_2
C-1303	< 35.0		
LATN			LATN - EXISTING - H60_2
UH60A	< 35.0		
LATN			LATN - EXISTING - A10_3
A-10A	< 35.0		
THUD MOA			THUD - EXISTING - A10_3
A-10A	< 35.0		
LATN			LATN - EXISTING - C130_3
C-1303	< 35.0		
LATN			LATN - EXISTING - H60_3
UH60A	< 35.0		
LATN			LATN - EXISTING - C130
C-1303	₹ 35.0		
LATN			LATN - EXISTING - A10
A-10A	₹ 35.0		
THUD MOA			THUD - EXISTING - F18
F-18A/C	< 35.0		
LATN			LATN - EXISTING - H60
UH60A	< 35.0		
THUD MOA			THUD - EXISTING - A10
A-10A	< 35.0		
R3008AB			R3008AB - EXISTING - A10_2
A-10A	< 35.0		
R3008AB			R3008AB - EXISTING - F35
F-35A	< 35.0		
R3008AB			R3008AB - EXISTING - A10_3
A-10A	< 35.0		
R3008AB			R3008AB - EXISTING - H60_2
UH60A	₹ 35.0		
R3008AB			R3008AB - EXISTING - C130_2
C-130J	< 35.0		
R3008C			R3008C - EXISTING - A10_2
A-10A	< 35.0		

Total Level 39.2 0.4

Specific Point: WARHAWK POI Top 20 contributors to this level:

	Sound Leve		
<	Airsp.	ace	> Mission
Aircraft	(dB)	HA(%)	
WARHAWK MOA			WARHANK - EXISTING - F35
F-35A	37.0	0.3	
WARHAWK MOA			WARHANK - EXISTING - A10_2
A-10A	< 35.0		
WARHAWK MOA			WARHANK - EXISTING - A10_3
A-10A	< 35.0		
WARHAWK MOA			WARHANK - EXISTING - F18
F-18A/C	< 35.0		
WARHAWK MOA			WARHANK - EXISTING - A10
A-10A	< 35.0		
R3008AB			R3008AB - EXISTING - A10_2
A-10A	< 35.0		
R3008AB			R3008AB - EXISTING - F35
F-35A	< 35.0		
R3008AB			R3008AB - EXISTING - A10 3
A-10A	< 35.0		management and provide a provide
R3008AB			R3008AB - EXISTING - H60 2
UH60A	< 35.0		
R3008AB			R3008AB - EXISTING - C130 2
C-130J	< 35.0		
R3008C			R3008C - EXISTING - A10 2
A-10A	₹ 35.0		
R3008AB			R3008AB - EXISTING - A10
A-10A	< 35.0		
R3008AB			R3008AB - EXISTING - H60 3
UH60A	< 35.0		
R3008AB			R3008AB - EXISTING - A29 3
T-6	< 35.0		
MOODY 2 NORTH	MOA		MOODY 2N - EXISTING - A10 2
A-10A	< 35.0		
R3008AB			R3008AB - EXISTING - C130 3
C-130J	₹ 35.0		
MOODY 2 SOUTH	0.000		MOODY 2S - EXISTING - A10 2
A-10A	< 35.0		10001 20 2012/12/10 1/20_2
MUSTANG MOA			MUSTANG - EXISTING - F35
	< 35.0		The state of the s
R3008C	100 TH 540		R3008C - EXISTING - F35
	< 35.0		noode Extorine 155
R3008C			R3008C - EXISTING - A10 3
NJC00C			HOOGE ENTOTING - MIG_S

A-10A < 35.0

Total Level 37.4 0.3

<Run Log>

Date: 7/24/2020 Start Time: 11:38:55 Stop Time: 11:49: 4

Total Running Time: 10 minutes and 9 seconds.

APPENDIX D. AIR QUALITY ANALYSIS RESULTS

FORMAT PAGE

Final EIS	
Moody AFB Comprehensive Airspace	Initiative

April 2023

D-1. Detail Air Conformity Applicability Model Report

FORMAT PAGE

AIR CONFORMITY APPLICABILITY MODEL REPORT RECORD OF AIR ANALYSIS (ROAA)

1. General Information: The Air Force's Air Conformity Applicability Model (ACAM) was used to perform an analysis to assess the potential air quality impact/s associated with the action in accordance with the Air Force

Process (EIAP, 32 Code	r Quality Compliance And Resource Management; the Environmental Impact Analysis of Federal Regulations [CFR] 989); and the General Conformity Rule (GCR, 40 CFR 93
Subpart B). This report	provides a summary of the ACAM analysis.
a. Action Location: Base: MOODY	AFB
State: Georgia	
• • •	ier; Lowndes
Regulatory Area(s): NOT IN A REGULATORY AREA
b. Action Title: Airspa	ace Optimization Moody AFB - Existing
c. Project Number/s (it	fapplicable):
d. Projected Action Sta	art Date: 1 / 2021
e. Action Description:	
	ained herein include the total emissions redistributed by the proposed action from Moody proposed low-altitude airspace.
f. Point of Contact:	
Name:	TLL
Title:	X
Organization:	Moody
Email:	X
Phone Number:	X
2. Air Impact Anal Conformity Rule are:	ysis: Based on the attainment status at the action location, the requirements of the General
	applicable
	X not applicable

Total combined direct and indirect emissions associated with the action were estimated through ACAM on a calendar-year basis for the "worst-case" and "steady state" (net gain/loss upon action fully implemented) emissions.

"Air Quality Indicators" were used to provide an indication of the significance of potential impacts to air quality. These air quality indicators are US Environmental Protection Agency (USEPA) General Conformity Rule (GCR) thresholds (de minimis levels) that are applied out of context to their intended use. Therefore, these indicators do not trigger a regulatory requirement; however, they provide a warning that the action is potentially significant. It is important to note that these indicators only provide a clue to the potential impacts to air quality.

Given the GCR de minimis threshold values are the maximum net change an action can acceptably emit in nonattainment and maintenance areas, these threshold values would also conservatively indicate an actions emissions within an attainment would also be acceptable. An air quality indicator value of 100 tons/year is used based on the GCR de minimis threshold for the least severe non-attainment classification for all criteria pollutants (see 40 CFR

93.153). Therefore, the worst-case year emissions were compared against the GCR indicator and are summarized below.

Analysis Summary:

2021

2021							
Dollutont	Action Emissions	AIR QUALITY INDICATOR					
Pollutant	(ton/yr)	Threshold (ton/yr)	Exceedance (Yes or No)				
NOT IN A REGULATORY AREA							
VOC	12.896	100	No				
NOx	87.929	100	No				
CO	48.938	100	No				
SOx	8.747	100	No				
PM 10	14.728	100	No				
PM 2.5	11.458	100	No				
Pb	0.000	25	No				
NH3	0.000	100	No				
CO2e	26686.2						

2022 - Steady State

Pollutant	Action Emissions	Action Emissions AIR QUALITY INDIC.		
ronutant	(ton/yr)	Threshold (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATORY	AREA			
VOC	12.896	100	No	
NOx	87.929	100	No	
CO	48.938	100	No	
SOx	8.747	100	No	
PM 10	14.728	100	No	
PM 2.5	11.458	100	No	
Pb	0.000	25	No	
NH3	0.000	100	No	
CO2e	26686.2			

None of estimated emissions associated with this action are above the GCR indicators, indicating no significant impact to air quality; therefore, no further air assessment is needed.

Tim Lavallee	

Appendix D D-4

DETAIL AIR CONFORMITY APPLICABILITY MODEL REPORT

General Information

- Action Location

Base: MOODY AFB **State:** Georgia

County(s): Lanier; Lowndes

Regulatory Area(s): NOT IN A REGULATORY AREA

- Action Title: Airspace Optimization Moody AFB - Existing

- Project Number/s (if applicable):

- Projected Action Start Date: 1 / 2021

- Action Purpose and Need:

Addition of low-altitude airspace at Moody AFB.

- Action Description:

The emissions contained herein include the total emissions redistributed by the proposed action from Moody 2N/S into the newly proposed low-altitude airspace.

- Point of Contact

Name: TLL
Title: X
Organization: Moody
Email: X
Phone Number: X

- Activity List:

	Activity Type	Activity Title
2.	Aircraft	A-10
3.	Aircraft	A-29
4.	Aircraft	C-130J
5.	Aircraft	HH-60
6.	Aircraft	F-18

Emission factors and air emission estimating methods come from the United States Air Force's Air Emissions Guide for Air Force Stationary Sources, Air Emissions Guide for Air Force Mobile Sources, and Air Emissions Guide for Air Force Transitory Sources.

2. Aircraft

2.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Lanier

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: A-10

- Activity Description:

Airspace Operations

- Activity Start Date

Start Month: 1 Start Year: 2021

- Activity End Date

Indefinite: Yes
End Month: N/A
End Year: N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	9.219789
SO_x	0.962146
NO_x	5.611147
CO	33.310751
PM 10	5.518420

Pollutant	Emissions Per Year (TONs)
PM 2.5	3.579876
Pb	0.000000
NH ₃	0.000000
CO ₂ e	2935.5

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	9.219789
SO_x	0.962146
NO_x	5.611147
CO	33.310751
PM 10	5.518420

Pollutant	Emissions Per Year (TONs)
PM 2.5	3.579876
Pb	0.000000
NH ₃	0.000000
CO ₂ e	2935.5

2.2 Aircraft & Engines

2.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation: A-10C
Engine Model: TF34-GE-100
Primary Function: Combat
Aircraft has After burn: No
Number of Engines: 2

- Aircraft & Engine Surrogate

Is Aircraft & Engine a Surrogate? No

Original Aircraft Name: Original Engine Name:

2.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	390.00	39.45	1.06	2.10	106.70	8.13	3.60	3234
Approach	920.00	2.19	1.06	5.70	16.30	6.21	2.12	3234
Intermediate	460.00	23.35	1.06	2.60	78.00	8.93	6.95	3234
Military	2710.00	0.12	1.06	10.70	2.20	2.66	1.68	3234

After Burn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3234

2.3 Flight Operations

2.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft:

Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:

Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:

Number of Annual Trim Test(s) per Aircraft:

12

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)

Taxi/Idle Out [Idle] (mins):

Takeoff [Military] (mins):

6907

Takeoff [After Burn] (mins):

Climb Out [Intermediate] (mins):

48348

Approach [Approach] (mins):

13814

Taxi/Idle In [Idle] (mins):

0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test

Idle (mins):12Approach (mins):27Intermediate (mins):9Military (mins):12AfterBurn (mins):0

2.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

LTO: Number of Landing and Take-off Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs)

AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

TGO: Number of Touch-and-Go Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs)

AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs)

AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs)

AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs)

AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs)

AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

2.4 Auxiliary Power Unit (APU)

2.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: No

- Auxiliary Power Unit (APU)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
-------------------------------	------------------------------------	----------------	-------------	--------------

2.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SO _x	NOx	CO	PM 10	PM 2.5	CO ₂ e
	1.10 **							

2.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APUPOL: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)

APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour)

LTO: Number of LTOs

EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

3. Aircraft

3.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Lanier

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: A-29

- Activity Description:

Airspace Operations

- Activity Start Date

Start Month: 1 Start Year: 2021

- Activity End Date

Indefinite: Yes
End Month: N/A
End Year: N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.040009
SO_x	0.061351
NO_x	0.350403
CO	0.566721
PM 10	0.217479

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.040618
Pb	0.000000
NH ₃	0.000000
CO ₂ e	187.2

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.040009
SO_x	0.061351
NO_x	0.350403
CO	0.566721
PM 10	0.217479

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.040618
Pb	0.000000
NH ₃	0.000000
CO ₂ e	187.2

3.2 Aircraft & Engines

3.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation: T-6A
Engine Model: PT6A-68
Primary Function: Trainer
Aircraft has After burn: No
Number of Engines: 1

- Aircraft & Engine Surrogate

Is Aircraft & Engine a Surrogate? No

Original Aircraft Name: Original Engine Name:

3.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	156.00	7.89	1.06	1.77	117.85	3.95	2.16	3234
Approach	328.00	3.29	1.06	5.03	33.69	4.15	1.23	3234
Intermediate	449.00	0.71	1.06	4.73	10.91	3.34	0.70	3234
Military	612.00	0.20	1.06	8.18	3.88	4.30	0.61	3234
After Burn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3234

3.3 Flight Operations

3.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft:1Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:1Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:0Number of Annual Trim Test(s) per Aircraft:0

- **Default Settings Used:** No

- Flight Operations TIMs (Time In Mode)

Taxi/Idle Out [Idle] (mins):0Takeoff [Military] (mins):4289Takeoff [After Burn] (mins):0Climb Out [Intermediate] (mins):8578Approach [Approach] (mins):1430Taxi/Idle In [Idle] (mins):0

Appendix D D-10

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used.)

- Trim Test

Idle (mins):0Approach (mins):0Intermediate (mins):0Military (mins):0AfterBurn (mins):0

3.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

LTO: Number of Landing and Take-off Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE\ IN} + AEM_{IDLE\ OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs)

AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

TGO: Number of Touch-and-Go Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs)

AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs)

AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs)

AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs)

AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs)

AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

3.4 Auxiliary Power Unit (APU)

3.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	D : (:	N. C.
per Aircraft	Hours for Each LTO	Source?	Designation	Manufacturer

3.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	CO ₂ e
e e	Flow							

3.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)

APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour)

LTO: Number of LTOs

EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

4. Aircraft

4.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Lanier

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: C-130J

- Activity Description:

Airspace Operations

- Activity Start Date

Start Month: 1 Start Year: 2021

- Activity End Date

Indefinite: Yes End Month: N/A End Year: N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	3.520666
SO_x	2.561166
NO_x	21.499181
CO	8.842812
PM 10	1.302005

Pollutant	Emissions Per Year (TONs)
PM 2.5	1.171764
Pb	0.000000
NH ₃	0.000000
CO ₂ e	7814.0

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	3.520666
SO_x	2.561166
NO_x	21.499181
CO	8.842812
PM 10	1.302005

Pollutant	Emissions Per Year (TONs)
PM 2.5	1.171764
Pb	0.000000
NH ₃	0.000000
CO ₂ e	7814.0

4.2 Aircraft & Engines

4.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation: C-130J **Engine Model:** T56-A-15

Primary Function: Transport - Bomber

Aircraft has After burn: No Number of Engines: 4

- Aircraft & Engine Surrogate

Is Aircraft & Engine a Surrogate?

Original Aircraft Name: Original Engine Name:

4.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	794.00	24.15	1.06	3.90	32.00	0.83	0.75	3234
Approach	1185.00	14.26	1.06	4.40	22.20	0.97	0.87	3234
Intermediate	1825.00	0.58	1.06	9.20	2.40	0.51	0.46	3234
Military	2302.00	0.46	1.06	9.30	2.10	0.50	0.45	3234
After Burn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3234

4.3 Flight Operations

4.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft:

Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:

Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:

Number of Annual Trim Test(s) per Aircraft:

0

No

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)

Taxi/Idle Out [Idle] (mins):

Takeoff [Military] (mins):

2004

Takeoff [After Burn] (mins):

Climb Out [Intermediate] (mins):

Approach [Approach] (mins):

Taxi/Idle In [Idle] (mins):

0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used.)

- Trim Test

Idle (mins):0Approach (mins):0Intermediate (mins):0Military (mins):0AfterBurn (mins):0

4.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

LTO: Number of Landing and Take-off Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE\ IN} + AEM_{IDLE\ OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs)

AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

TGO: Number of Touch-and-Go Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs)

AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs)

AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs)

AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs)

AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs)

AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

4.4 Auxiliary Power Unit (APU)

4.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: No

- Auxiliary Power Unit (APU)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	1	No	GTCP 85L	

4.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SO _x	NOx	СО	PM 10	PM 2.5	CO ₂ e
GTCP 85L	272.6	0.493	0.289	1.216	3.759	0.131	0.037	910.8

4.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)

APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour)

LTO: Number of LTOs

EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

5. Aircraft

5.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Lanier

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: HH-60

- Activity Description:

Airspace Operations

- Activity Start Date

Start Month: 1

Start Year: 2021

- Activity End Date

Indefinite: Yes
End Month: N/A
End Year: N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.081521
SO_x	4.652866
NO _x	52.285619
CO	5.478101
PM 10	6.935405

Pollutant	Emissions Per Year (TONs)
PM 2.5	6.233085
Pb	0.000000
NH ₃	0.000000
CO ₂ e	14195.6

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.081521
SO_x	4.652866
NO_x	52.285619
CO	5.478101
PM 10	6.935405

Pollutant	Emissions Per Year (TONs)
PM 2.5	6.233085
Pb	0.000000
NH ₃	0.000000
CO ₂ e	14195.6

5.2 Aircraft & Engines

5.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation: MV-22A Engine Model: T406-AD-400 Primary Function: Transport - Bomber

Aircraft has After burn: No **Number of Engines:** 2

- Aircraft & Engine Surrogate

Is Aircraft & Engine a Surrogate? No

Original Aircraft Name: Original Engine Name:

5.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

This cruit & Engine Emissions I accord (15/100015 Iuci)								
	Fuel Flow	VOC	SO _x	NO_x	CO	PM 10	PM 2.5	CO_2e
Idle	362.00	0.10	1.06	4.15	8.35	1.58	1.42	3234
Approach	663.00	0.02	1.06	6.05	3.47	1.58	1.42	3234
Intermediate	948.00	0.02	1.06	7.87	1.82	1.58	1.42	3234
Military	2507.00	0.01	1.06	18.03	0.29	1.58	1.42	3234
After Burn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3234

5.3 Flight Operations

5.3.1 Flight Operations Assumptions

- Flight Operations

```
Number of Aircraft:

Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:

Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:

Number of Annual Trim Test(s) per Aircraft:

0
```

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)

Taxi/Idle Out [Idle] (mins):0Takeoff [Military] (mins):42290Takeoff [After Burn] (mins):0Climb Out [Intermediate] (mins):158586Approach [Approach] (mins):10572Taxi/Idle In [Idle] (mins):0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used.)

- Trim Test

Idle (mins):0Approach (mins):0Intermediate (mins):0Military (mins):0AfterBurn (mins):0

5.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

LTO: Number of Landing and Take-off Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE\ IN} + AEM_{IDLE\ OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs)

AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

TGO: Number of Touch-and-Go Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs)

AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs)

AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs)

AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs)

AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

5.4 Auxiliary Power Unit (APU)

5.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: No

- Auxiliary Power Unit (APU)

Number of APU	Operation Hours for Each	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each LTO	Source?	Designation	Manufacturer

5.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SO _x	NOx	СО	PM 10	PM 2.5	CO ₂ e
-------------	--------------	-----	-----------------	-----	----	-------	--------	-------------------

5.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)

APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour)

LTO: Number of LTOs

EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

6. Aircraft

6.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Lowndes

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: F-18

- Activity Description:

- Activity Start Date

Start Month: 1 Start Year: 2021

- Activity End Date

Indefinite: Yes End Month: N/A End Year: N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.033634
SO_x	0.509320
NO_x	8.182756
CO	0.739956
PM 10	0.754370

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.432442
Pb	0.000000
NH_3	0.000000
CO ₂ e	1553.9

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.033634
SO_x	0.509320
NO_x	8.182756

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.432442
Pb	0.000000
NH_3	0.000000

1553.9

CO	0.739956	CO ₂ e
PM 10	0.754370	

6.2 Aircraft & Engines

6.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation: TF/A-18A **Engine Model:** F404-GE-400 **Primary Function:** Combat Aircraft has After burn: Yes **Number of Engines:**

- Aircraft & Engine Surrogate

Is Aircraft & Engine a Surrogate?

No

Original Aircraft Name: Original Engine Name:

6.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	685.00	3.39	1.06	1.70	110.18	4.47	3.10	3234
Approach	3111.00	0.04	1.06	7.86	2.02	1.46	0.87	3234
Intermediate	6464.00	0.07	1.06	17.03	1.54	1.57	0.90	3234
Military	7739.00	0.02	1.06	25.83	1.48	1.61	0.89	3234
After Burn	15851.00	1.85	1.06	5.43	50.31	3.57	3.21	3234

6.3 Flight Operations

6.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 1 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)

Taxi/Idle Out [Idle] (mins): 0 Takeoff [Military] (mins): 0 Takeoff [After Burn] (mins): 0 Climb Out [Intermediate] (mins): 4460 Approach [Approach] (mins): 0 0 Taxi/Idle In [Idle] (mins):

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used.)

D-21 Appendix D

- Trim Test

Idle (mins):0Approach (mins):0Intermediate (mins):0Military (mins):0AfterBurn (mins):0

6.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

LTO: Number of Landing and Take-off Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE\ IN} + AEM_{IDLE\ OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs)

AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

TGO: Number of Touch-and-Go Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs)

AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs)

AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs)

AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs)

AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs)

AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

6.4 Auxiliary Power Unit (APU)

6.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
-------------------------------	------------------------------------	----------------	-------------	--------------

6.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

	E1							
Designation	Fuel Flow	VOC	SO _x	NOx	CO	PM 10	PM 2.5	CO ₂ e

6.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)

APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour)

LTO: Number of LTOs

EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

AIR CONFORMITY APPLICABILITY MODEL REPORT RECORD OF AIR ANALYSIS (ROAA)

1. General Information: The Air Force's Air Conformity Applicability Model (ACAM) was used to perform S

	potential air quality impact/s associated with the action in accordance with the Air Force
	r Quality Compliance And Resource Management; the Environmental Impact Analysis 989); and the General Conformity Rule (GCR, 40 CFR 93 Subpart B). This report provides
a summary of the ACAI	vI analysis.
a. Action Location:	
Base: MOODY	AFB
State: Georgia	· • •
	ier; Lowndes): NOT IN A REGULATORY AREA
b. Action Title: Airspa	ace Optimization Moody AFB – Alternative 1
c. Project Number/s (i	fapplicable):
d. Projected Action Sta	art Date: 1 / 2021
e. Action Description:	
	ained herein include the total emissions redistributed by the proposed action from Moody proposed low-altitude airspace.
f. Point of Contact:	
Name:	TLL
Title:	X
Organization:	Moody
Email:	X
Phone Number:	X
2. Air Impact Anal Conformity Rule are:	ysis: Based on the attainment status at the action location, the requirements of the General
	applicable
	X not applicable
	nd indirect emissions associated with the action were estimated through ACAM on a the "worst-case" and "steady state" (net gain/loss upon action fully implemented) emissions.

"Air Quality Indicators" were used to provide an indication of the significance of potential impacts to air quality. These air quality indicators are USEPA General Conformity Rule (GCR) thresholds (de minimis levels) that are applied out of context to their intended use. Therefore, these indicators do not trigger a regulatory requirement; however, they provide a warning that the action is potentially significant. It is important to note that these indicators only provide a clue to the potential impacts to air quality.

Given the GCR de minimis threshold values are the maximum net change an action can acceptably emit in nonattainment and maintenance areas, these threshold values would also conservatively indicate an actions emissions

DATE

within an attainment would also be acceptable. An air quality indicator value of 100 tons/year is used based on the GCR *de minimis* threshold for the least severe non-attainment classification for all criteria pollutants (see 40 CFR 93.153). Therefore, the worst-case year emissions were compared against the GCR indicator and are summarized below.

Analysis Summary:

Tim Lavallee

2021

Pollutant	Action Emissions	AIR QUALITY INDICATOR				
Pollutant	(ton/yr)	Threshold (ton/yr)	Exceedance (Yes or No)			
NOT IN A REGULATORY	AREA					
VOC	13.148	100	No			
NOx	89.729	100	No			
CO	50.055	100	No			
SOx	8.916	100	No			
PM 10	10 15.077		No			
PM 2.5 11.687		100	No			
Pb 0.000		25	No			
NH3 0.000		100	No			
CO2e	27202.9					

2022 - (Steady State)

D. II. ()	Action Emissions	AIR QUALITY	Y INDICATOR			
Pollutant	(ton/yr)	Threshold (ton/yr)	Exceedance (Yes or No)			
NOT IN A REGULATORY AREA						
VOC	13.148	100	No			
NOx	89.729	100	No			
CO	50.055	100	No			
SOx	8.916	100	No			
PM 10	15.077	100	No			
PM 2.5	11.687	100	No			
Pb	0.000	25	No			
NH3	0.000	100	No			
CO2e	27202.9					

impact to air quality; therefore, no further air assessment is needed.

None of estimated emissions associated with this action are above the GCR indicators, indicating no significant

Appendix D D-25

DETAIL AIR CONFORMITY APPLICABILITY MODEL REPORT

1. General Information

- Action Location

Base: MOODY AFB **State:** Georgia

County(s): Lanier; Lowndes

Regulatory Area(s): NOT IN A REGULATORY AREA

- Action Title: Airspace Optimization Moody AFB – Alternative 1

- Project Number/s (if applicable):

- Projected Action Start Date: 1 / 2021

- Action Purpose and Need:

Addition of low-altitude airspace at Moody AFB.

- Action Description:

The emissions contained herein include the total emissions redistributed by the proposed action from Moody 2N/S into the newly proposed low-altitude airspace.

- Point of Contact

Name: TLL
Title: X
Organization: Moody
Email: X
Phone Number: X

- Activity List:

	Activity Type	Activity Title
2.	Aircraft	A-10
3.	Aircraft	A-29
4.	Aircraft	C-130J
5.	Aircraft	HH-60
6.	Aircraft	F-18

Emission factors and air emission estimating methods come from the United States Air Force's Air Emissions Guide for Air Force Stationary Sources, Air Emissions Guide for Air Force Mobile Sources, and Air Emissions Guide for Air Force Transitory Sources.

2. Aircraft

2.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Lanier

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: A-10

- Activity Description:

Airspace Operations

- Activity Start Date

Start Month: 1 Start Year: 2021

- Activity End Date

Indefinite: Yes
End Month: N/A
End Year: N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	9.439535
SO_x	0.984908
NO_x	5.743444
CO	34.104252
PM 10	5.649368

Pollutant	Emissions Per Year (TONs)
PM 2.5	3.665094
Pb	0.000000
NH ₃	0.000000
CO ₂ e	3004.9

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	9.439535
SO_x	0.984908
NO _x	5.743444
CO	34.104252
PM 10	5.649368

Pollutant	Emissions Per Year (TONs)
PM 2.5	3.665094
Pb	0.000000
NH ₃	0.000000
CO ₂ e	3004.9

2.2 Aircraft & Engines

2.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation: A-10C
Engine Model: TF34-GE-100
Primary Function: Combat
Aircraft has After burn: No
Number of Engines: 2

- Aircraft & Engine Surrogate

Is Aircraft & Engine a Surrogate? No

Original Aircraft Name: Original Engine Name:

2.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO_x	NO_x	CO	PM 10	PM 2.5	CO_2e
Idle	390.00	39.45	1.06	2.10	106.70	8.13	3.60	3234
Approach	920.00	2.19	1.06	5.70	16.30	6.21	2.12	3234

Appendix D D-27

Intermediate	460.00	23.35	1.06	2.60	78.00	8.93	6.95	3234
Military	2710.00	0.12	1.06	10.70	2.20	2.66	1.68	3234
After Burn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3234

2.3 Flight Operations

2.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft:

Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:

1
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:

0
Number of Annual Trim Test(s) per Aircraft:

12

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)

Taxi/Idle Out [Idle] (mins):0Takeoff [Military] (mins):7073Takeoff [After Burn] (mins):0Climb Out [Intermediate] (mins):49509Approach [Approach] (mins):14145Taxi/Idle In [Idle] (mins):0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used.)

- Trim Test

Idle (mins):12Approach (mins):27Intermediate (mins):9Military (mins):12AfterBurn (mins):0

2.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

LTO: Number of Landing and Take-off Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE\ IN} + AEM_{IDLE\ OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs)

AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs)

AEM_{IDLE OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

April 2023

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

TGO: Number of Touch-and-Go Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs)

AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs)

AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs)

AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs)

AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs)

AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

2.4 Auxiliary Power Unit (APU)

2.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used:

- Auxiliary Power Unit (APU)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
-------------------------------	------------------------------------	----------------	-------------	--------------

2.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SO _x	NOx	CO	PM 10	PM 2.5	CO ₂ e
_	FIOW							

2.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)

APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour)

LTO: Number of LTOs

EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

3. Aircraft

3.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Lanier

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: A-29

- Activity Description:

Airspace Operations

- Activity Start Date

Start Month: 1 Start Year: 2021

- Activity End Date

Indefinite: Yes End Month: N/A End Year: N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.045074
SO_x	0.069118
NO_x	0.394765

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.045760
Pb	0.000000
NH ₃	0.000000

CO	0.638466
PM 10	0.245012

CO ₂ e	210.9

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

	[8] (
Pollutant	Emissions Per Year (TONs)
VOC	0.045074
SO_x	0.069118
NO_x	0.394765
CO	0.638466
PM 10	0.245012

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.045760
Pb	0.000000
NH ₃	0.000000
CO ₂ e	210.9

3.2 Aircraft & Engines

3.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation: T-6A
Engine Model: PT6A-68
Primary Function: Trainer
Aircraft has After burn: No
Number of Engines: 1

- Aircraft & Engine Surrogate

Is Aircraft & Engine a Surrogate? No

Original Aircraft Name: Original Engine Name:

3.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO_x	NO_x	CO	PM 10	PM 2.5	CO ₂ e
Idle	156.00	7.89	1.06	1.77	117.85	3.95	2.16	3234
Approach	328.00	3.29	1.06	5.03	33.69	4.15	1.23	3234
Intermediate	449.00	0.71	1.06	4.73	10.91	3.34	0.70	3234
Military	612.00	0.20	1.06	8.18	3.88	4.30	0.61	3234
After Burn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3234

D-31

3.3 Flight Operations

3.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft:

Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:

Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:

Number of Annual Trim Test(s) per Aircraft:

0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)

Taxi/Idle Out [Idle] (mins):

Takeoff [Military] (mins):

4832

Takeoff [After Burn] (mins):

Climb Out [Intermediate] (mins):

9664

Approach [Approach] (mins): 1611 **Taxi/Idle In [Idle] (mins):** 0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used.)

- Trim Test

Idle (mins):0Approach (mins):0Intermediate (mins):0Military (mins):0AfterBurn (mins):0

3.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

LTO: Number of Landing and Take-off Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE\ IN} + AEM_{IDLE\ OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs)

AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

TGO: Number of Touch-and-Go Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs)

AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

AETRIM = AEPSIDLE + AEPSAPPROACH + AEPSINTERMEDIATE + AEPSMILITARY + AEPSAFTERBURN

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs)

AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs)

AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs)

AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs)

AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

3.4 Auxiliary Power Unit (APU)

3.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number per Ai		Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
------------------	--	------------------------------------	----------------	-------------	--------------

3.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

114111141 / 1 0 11 0 11 0 11 1	0) 231111551011	2 66 66 67 (28)	, ,					
Designation	Fuel Flow	voc	SO _x	NO _x	CO	PM 10	PM 2.5	CO ₂ e

3.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)

APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour)

LTO: Number of LTOs

EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

4. Aircraft

4.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Lanier

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: C-130J

- Activity Description:

Airspace Operations

- Activity Start Date

Start Month: 1 Start Year: 2021

- Activity End Date

Indefinite: Yes End Month: N/A End Year: N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	3.542098
SO_x	2.577149
NO_x	21.633532
CO	8.897217
PM 10	1.310112

Pollutant	Emissions Per Year (TONs)
PM 2.5	1.179061
Pb	0.000000
NH ₃	0.000000
CO ₂ e	7862.7

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	3.542098
SO_x	2.577149
NO_x	21.633532
CO	8.897217
PM 10	1.310112

Pollutant	Emissions Per Year (TONs)
PM 2.5	1.179061
Pb	0.000000
NH ₃	0.000000
CO ₂ e	7862.7

4.2 Aircraft & Engines

4.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation: C-130J **Engine Model:** T56-A-15

Primary Function: Transport - Bomber

Aircraft has After burn: No **Number of Engines:** 4

- Aircraft & Engine Surrogate

Is Aircraft & Engine a Surrogate?

No

Original Aircraft Name: Original Engine Name:

4.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO_x	NO_x	CO	PM 10	PM 2.5	CO_2e
Idle	794.00	24.15	1.06	3.90	32.00	0.83	0.75	3234
Approach	1185.00	14.26	1.06	4.40	22.20	0.97	0.87	3234
Intermediate	1825.00	0.58	1.06	9.20	2.40	0.51	0.46	3234
Military	2302.00	0.46	1.06	9.30	2.10	0.50	0.45	3234
After Burn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3234

4.3 Flight Operations

4.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft:

Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:

Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:

Number of Annual Trim Test(s) per Aircraft:

0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)

Taxi/Idle Out [Idle] (mins):

Takeoff [Military] (mins):

Climb Out [Intermediate] (mins):

Approach [Approach] (mins):

Description:

16130

2016

Taxi/Idle In [Idle] (mins):

0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used.)

- Trim Test

Idle (mins):0Approach (mins):0Intermediate (mins):0Military (mins):0AfterBurn (mins):0

4.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

LTO: Number of Landing and Take-off Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE\ IN} + AEM_{IDLE\ OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

April 2023

AE_{LTO}: Aircraft Emissions (TONs)

AEM_{IDLE IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

TGO: Number of Touch-and-Go Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs)

AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs)

AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs)

AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

4.4 Auxiliary Power Unit (APU)

4.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: No

- Auxiliary Power Unit (APU)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	1	No	GTCP 85L	

4.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SO _x	NOx	СО	PM 10	PM 2.5	CO ₂ e
GTCP 85L	272.6	0.493	0.289	1.216	3.759	0.131	0.037	910.8

4.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)

APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour)

LTO: Number of LTOs

EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

5. Aircraft

5.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Lanier

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: HH-60

- Activity Description:

Airspace Operations

- Activity Start Date

Start Month: 1 Start Year: 2021

- Activity End Date

Indefinite: Yes End Month: N/A End Year: N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.082728
SO_x	4.708474
NO _x	52.694217
CO	5.577444
PM 10	7.018292

Pollutant	Emissions Per Year (TONs)
PM 2.5	6.307579
Pb	0.000000
NH ₃	0.000000
CO ₂ e	14365.3

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.082728
SO_x	4.708474
NO_x	52.694217
CO	5.577444
PM 10	7.018292

Pollutant	Emissions Per Year (TONs)
PM 2.5	6.307579
Pb	0.000000
NH ₃	0.000000
CO ₂ e	14365.3

5.2 Aircraft & Engines

5.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation: MV-22A
Engine Model: T406-AD-400
Primary Function: Transport - Bomber

Aircraft has After burn: No **Number of Engines:** 2

- Aircraft & Engine Surrogate

Is Aircraft & Engine a Surrogate? No

Original Aircraft Name: Original Engine Name:

5.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO_x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	362.00	0.10	1.06	4.15	8.35	1.58	1.42	3234
Approach	663.00	0.02	1.06	6.05	3.47	1.58	1.42	3234
Intermediate	948.00	0.02	1.06	7.87	1.82	1.58	1.42	3234
Military	2507.00	0.01	1.06	18.03	0.29	1.58	1.42	3234
After Burn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3234

5.3 Flight Operations

5.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft:

Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:

1 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:

0 Number of Annual Trim Test(s) per Aircraft:

0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)

Taxi/Idle Out [Idle] (mins):0Takeoff [Military] (mins):42290Takeoff [After Burn] (mins):0Climb Out [Intermediate] (mins):161758Approach [Approach] (mins):10784Taxi/Idle In [Idle] (mins):0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used.)

- Trim Test

Idle (mins):0Approach (mins):0Intermediate (mins):0Military (mins):0AfterBurn (mins):0

5.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

LTO: Number of Landing and Take-off Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE\ IN} + AEM_{IDLE\ OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs)

AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

TGO: Number of Touch-and-Go Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs)

AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs)

AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs)

AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs)

AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs)

AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

5.4 Auxiliary Power Unit (APU)

5.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: No

- Auxiliary Power Unit (APU)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

5.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

5.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)

APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour)

LTO: Number of LTOs

EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

6. Aircraft

6.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Lowndes

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: F-18

- Activity Description:

- Activity Start Date

Start Month: 1 Start Year: 2021

- Activity End Date

Indefinite: Yes End Month: N/A End Year: N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.038076
SO_x	0.576582
NO_x	9.263394
CO	0.837676
PM 10	0.853995

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.489551
Pb	0.000000
NH ₃	0.000000
CO ₂ e	1759.1

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.038076
SO_x	0.576582

Pollutant	Emissions Per Year (TONs)		
PM 2.5	0.489551		
Pb	0.000000		

NO _x	9.263394
CO	0.837676
PM 10	0.853995

NH ₃	0.000000
CO ₂ e	1759.1

6.2 Aircraft & Engines

6.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation: TF/A-18A
Engine Model: F404-GE-400
Primary Function: Combat
Aircraft has After burn: Yes
Number of Engines: 2

- Aircraft & Engine Surrogate

Is Aircraft & Engine a Surrogate? No

Original Aircraft Name: Original Engine Name:

6.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO_x	NO_x	CO	PM 10	PM 2.5	CO ₂ e
Idle	685.00	3.39	1.06	1.70	110.18	4.47	3.10	3234
Approach	3111.00	0.04	1.06	7.86	2.02	1.46	0.87	3234
Intermediate	6464.00	0.07	1.06	17.03	1.54	1.57	0.90	3234
Military	7739.00	0.02	1.06	25.83	1.48	1.61	0.89	3234
After Burn	15851.00	1.85	1.06	5.43	50.31	3.57	3.21	3234

6.3 Flight Operations

6.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft:

Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:

Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:

Number of Annual Trim Test(s) per Aircraft:

0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)

Taxi/Idle Out [Idle] (mins):

Takeoff [Military] (mins):

Takeoff [After Burn] (mins):

Climb Out [Intermediate] (mins):

Approach [Approach] (mins):

Taxi/Idle In [Idle] (mins):

0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used.)

- Trim Test

Idle (mins):0Approach (mins):0Intermediate (mins):0Military (mins):0AfterBurn (mins):0

6.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

LTO: Number of Landing and Take-off Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE\ IN} + AEM_{IDLE\ OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs)

AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

TGO: Number of Touch-and-Go Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs)

AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs)

AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs)

AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs)

AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs)

AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

6.4 Auxiliary Power Unit (APU)

6.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
-------------------------------	------------------------------------	----------------	-------------	--------------

6.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

7 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	0) ===================================	- 111111)					
Designation	Fuel Flow	VOC	SO _x	NOx	СО	PM 10	PM 2.5	CO ₂ e

6.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APUPOL: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)

APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour)

LTO: Number of LTOs

EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

AIR CONFORMITY APPLICABILITY MODEL REPORT **RECORD OF AIR ANALYSIS (ROAA)**

1. General Information: The Air Force's Air Conformity Applicability Model (ACAM) was used to perform
an analysis to assess the potential air quality impact/s associated with the action in accordance with the Air Force
Instruction 32-7040, Air Quality Compliance And Resource Management; the Environmental Impact Analysis
Process (EIAP, 32 CFR 989); and the General Conformity Rule (GCR, 40 CFR 93 Subpart B). This report provides
a summary of the ACAM analysis.

	e potential air quality impact/s associated with the action in accordance with the Air Force r Quality Compliance And Resource Management; the Environmental Impact Analysis
	989); and the General Conformity Rule (GCR, 40 CFR 93 Subpart B). This report provides
a summary of the ACA	
J	
a. Action Location:	
Base: MOODY	AFB
State: Georgia	
County(s): Lar	nier; Lowndes
Regulatory Area(s	s): NOT IN A REGULATORY AREA
b. Action Title: Airsp	ace Optimization Moody AFB – Alternative 2
c. Project Number/s (i	f applicable):
d. Projected Action St	art Date: 1 / 2021
e. Action Description:	
	rained herein include the total emissions redistributed by the proposed action from Moody y proposed low-altitude airspace.
f. Point of Contact:	
Name:	TLL
Title:	X
Organization:	Moody
Email:	X
Phone Number:	X
2 Air Impact Anal	lysiss Device Device at the state of the control of
Conformity Rule are:	lysis: Based on the attainment status at the action location, the requirements of the General
	applicable
	X not applicable

Total combined direct and indirect emissions associated with the action were estimated through ACAM on a calendar-year basis for the "worst-case" and "steady state" (net gain/loss upon action fully implemented) emissions.

"Air Quality Indicators" were used to provide an indication of the significance of potential impacts to air quality. These air quality indicators are USEPA General Conformity Rule (GCR) thresholds (de minimis levels) that are applied out of context to their intended use. Therefore, these indicators do not trigger a regulatory requirement; however, they provide a warning that the action is potentially significant. It is important to note that these indicators only provide a clue to the potential impacts to air quality.

Given the GCR *de minimis* threshold values are the maximum net change an action can acceptably emit in non-attainment and maintenance areas, these threshold values would also conservatively indicate an actions emissions within an attainment would also be acceptable. An air quality indicator value of 100 tons/year is used based on the GCR *de minimis* threshold for the least severe non-attainment classification for all criteria pollutants (see 40 CFR 93.153). Therefore, the worst-case year emissions were compared against the GCR indicator and are summarized below.

Analysis Summary:

2021

Pollutant	Action Emissions	AIR QUALITY INDICATOR				
Pollutant	(ton/yr)	Threshold (ton/yr)	Exceedance (Yes or No)			
NOT IN A REGULATORY	AREA					
VOC	13.031	100	No			
NOx	89.099	100	No			
CO	49.534	100	No			
SOx	8.849	100	No			
PM 10	14.927	100	No			
PM 2.5	11.589	100	No			
Pb	0.000	25	No			
NH3	0.000	100	No			
CO2e	26996.9					

2022 - Steady State

Pollutant	Action Emissions	AIR QUALITY INDICATOR					
Ponutant	(ton/yr)	Threshold (ton/yr)	Exceedance (Yes or No)				
NOT IN A REGULATORY	A REGULATORY AREA						
VOC	13.031	100	No				
NOx	89.099	100	No				
CO	49.534	100	No				
SOx	8.849	100	No				
PM 10	14.927	100	No				
PM 2.5	11.589	100	No				
Pb	0.000	25	No				
NH3	0.000	100	No				
CO2e	26996.9						

None of estimated emissions associated with this action are above the GCR indicators, incimpact to air quality; therefore, no further air assessment is needed.	licating no significant
TLL, X	DATE

DETAIL AIR CONFORMITY APPLICABILITY MODEL REPORT

1. General Information

- Action Location

Base: MOODY AFB **State:** Georgia

County(s): Lanier; Lowndes

Regulatory Area(s): NOT IN A REGULATORY AREA

- Action Title: Airspace Optimization Moody AFB – Alternative 2

- Project Number/s (if applicable):

- Projected Action Start Date: 1 / 2021

- Action Purpose and Need:

Addition of low-altitude airspace at Moody AFB.

- Action Description:

The emissions contained herein include the total emissions redistributed by the proposed action from Moody 2N/S into the newly proposed low-altitude airspace.

- Point of Contact

Name: TLL
Title: X
Organization: Moody
Email: X
Phone Number: X

- Activity List:

	Activity Type	Activity Title						
2.	Aircraft	A-10						
3.	Aircraft	A-29						
4.	Aircraft	C-130J						
5.	Aircraft	HH-60						
6.	Aircraft	F-18						

Emission factors and air emission estimating methods come from the United States Air Force's Air Emissions Guide for Air Force Stationary Sources, Air Emissions Guide for Air Force Mobile Sources, and Air Emissions Guide for Air Force Transitory Sources.

2. Aircraft

2.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Lanier

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: A-10

- Activity Description:

Airspace Operations

- Activity Start Date

Start Month: 1 Start Year: 2021

- Activity End Date

Indefinite: Yes End Month: N/A End Year: N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)					
VOC	9.329768					
SO_x	0.973539					
NO_x	5.677349					
CO	33.707925					
PM 10	5.583976					

Pollutant	Emissions Per Year (TONs)
PM 2.5	3.622528
Pb	0.000000
NH ₃	0.000000
CO ₂ e	2970.2

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	9.329768
SO_x	0.973539
NO_x	5.677349
CO	33.707925
PM 10	5.583976

Pollutant	Emissions Per Year (TONs)
PM 2.5	3.622528
Pb	0.000000
NH ₃	0.000000
CO ₂ e	2970.2

2.2 Aircraft & Engines

2.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation: A-10C
Engine Model: TF34-GE-100
Primary Function: Combat
Aircraft has After burn: No
Number of Engines: 2

- Aircraft & Engine Surrogate

Is Aircraft & Engine a Surrogate? No

Original Aircraft Name: Original Engine Name:

2.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	390.00	39.45	1.06	2.10	106.70	8.13	3.60	3234

Appendix D D-48

Approach	920.00	2.19	1.06	5.70	16.30	6.21	2.12	3234
Intermediate	460.00	23.35	1.06	2.60	78.00	8.93	6.95	3234
Military	2710.00	0.12	1.06	10.70	2.20	2.66	1.68	3234
After Burn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3234

2.3 Flight Operations

2.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft:

Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:

1

Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:

0

Number of Annual Trim Test(s) per Aircraft:

12

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)

Taxi/Idle Out [Idle] (mins):0Takeoff [Military] (mins):6990Takeoff [After Burn] (mins):0Climb Out [Intermediate] (mins):48929Approach [Approach] (mins):13980Taxi/Idle In [Idle] (mins):0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used.)

- Trim Test

Idle (mins):12Approach (mins):27Intermediate (mins):9Military (mins):12AfterBurn (mins):0

2.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

LTO: Number of Landing and Take-off Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE\ IN} + AEM_{IDLE\ OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs)

AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

TGO: Number of Touch-and-Go Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs)

AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs)

AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs)

AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs)

AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

2.4 Auxiliary Power Unit (APU)

2.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: No

- Auxiliary Power Unit (APU)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
----------------------------	------------------------------------	----------------	-------------	--------------

2.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	CO ₂ e
8	Flow							

2.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)

APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour)

LTO: Number of LTOs

EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

3. Aircraft

3.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Lanier

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: A-29

- Activity Description:

Airspace Operations

- Activity Start Date

Start Month: 1 Start Year: 2021

- Activity End Date

Indefinite: Yes End Month: N/A End Year: N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.044202
SO_x	0.067734

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.044840
Pb	0.000000

NO_x	0.384708
CO	0.627450
PM 10	0.239426

NH ₃	0.000000
CO ₂ e	206.7

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Treering Emission	is I iight o between the time in the
Pollutant	Emissions Per Year (TONs)
VOC	0.044202
SO_x	0.067734
NO_x	0.384708
CO	0.627450
PM 10	0.239426

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.044840
Pb	0.000000
NH ₃	0.000000
CO ₂ e	206.7

3.2 Aircraft & Engines

3.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation: T-6A
Engine Model: PT6A-68
Primary Function: Trainer
Aircraft has After burn: No
Number of Engines: 1

- Aircraft & Engine Surrogate

Is Aircraft & Engine a Surrogate?

Original Aircraft Name: Original Engine Name:

3.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO_x	NO_x	CO	PM 10	PM 2.5	CO_2e
Idle	156.00	7.89	1.06	1.77	117.85	3.95	2.16	3234
Approach	328.00	3.29	1.06	5.03	33.69	4.15	1.23	3234
Intermediate	449.00	0.71	1.06	4.73	10.91	3.34	0.70	3234
Military	612.00	0.20	1.06	8.18	3.88	4.30	0.61	3234
After Burn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3234

D-52

3.3 Flight Operations

3.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft:1Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:1Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:0Number of Annual Trim Test(s) per Aircraft:0

No

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)

Taxi/Idle Out [Idle] (mins):0Takeoff [Military] (mins):4615Takeoff [After Burn] (mins):0

Appendix D

Climb Out [Intermediate] (mins): 9664 Approach [Approach] (mins): 1538 Taxi/Idle In [Idle] (mins): 0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used.)

- Trim Test

Idle (mins):0Approach (mins):0Intermediate (mins):0Military (mins):0AfterBurn (mins):0

3.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

LTO: Number of Landing and Take-off Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE\ IN} + AEM_{IDLE\ OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs)

AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

TGO: Number of Touch-and-Go Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs)

AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs)

AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs)

AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs)

AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs)

AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

3.4 Auxiliary Power Unit (APU)

3.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

 · · · · · · · · · · · · · · · · · · ·	- (-) ()			
Number of APU per Aircraft	Operation Hours for Each	Exempt Source?	Designation	Manufacturer

3.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation Flow VOC SO _x NO _x CO PM 10 PM 2.5 CO ₂ e
--

3.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)

APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour)

LTO: Number of LTOs

EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

4. Aircraft

4.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Lanier

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: C-130J

- Activity Description:

Airspace Operations

- Activity Start Date

Start Month: 1 Start Year: 2021

- Activity End Date

Indefinite: Yes End Month: N/A End Year: N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	3.538514
SO_x	2.574464
NO_x	21.610954
CO	8.888101
PM 10	1.308751

Pollutant	Emissions Per Year (TONs)
PM 2.5	1.177835
Pb	0.000000
NH ₃	0.000000
CO ₂ e	7854.6

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	3.538514
SO_x	2.574464
NO _x	21.610954
CO	8.888101
PM 10	1.308751

Pollutant	Emissions Per Year (TONs)
PM 2.5	1.177835
Pb	0.000000
NH ₃	0.000000
CO ₂ e	7854.6

4.2 Aircraft & Engines

4.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation: C-130J **Engine Model:** T56-A-15

Primary Function: Transport - Bomber

Aircraft has After burn: No

Number of Engines: 4

- Aircraft & Engine Surrogate

Is Aircraft & Engine a Surrogate? No

Original Aircraft Name: Original Engine Name:

4.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	794.00	24.15	1.06	3.90	32.00	0.83	0.75	3234
Approach	1185.00	14.26	1.06	4.40	22.20	0.97	0.87	3234
Intermediate	1825.00	0.58	1.06	9.20	2.40	0.51	0.46	3234
Military	2302.00	0.46	1.06	9.30	2.10	0.50	0.45	3234
After Burn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3234

4.3 Flight Operations

4.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft:

Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:

Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:

Number of Annual Trim Test(s) per Aircraft:

0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)

Taxi/Idle Out [Idle] (mins):

Takeoff [Military] (mins):

2014

Takeoff [After Burn] (mins):

Climb Out [Intermediate] (mins):

Approach [Approach] (mins):

Taxi/Idle In [Idle] (mins):

0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used.)

- Trim Test

Idle (mins): 0
Approach (mins): 0
Intermediate (mins): 0
Military (mins): 0
AfterBurn (mins): 0

4.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

LTO: Number of Landing and Take-off Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE\ IN} + AEM_{IDLE\ OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs)

AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

TGO: Number of Touch-and-Go Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs)

AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs)

AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs)
AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs)
AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs)

AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

4.4 Auxiliary Power Unit (APU)

4.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: No

- Auxiliary Power Unit (APU)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	1	No	GTCP 85L	

4.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SO _x	NOx	СО	PM 10	PM 2.5	CO ₂ e
GTCP 85L	272.6	0.493	0.289	1.216	3.759	0.131	0.037	910.8

4.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)

APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour)

LTO: Number of LTOs

EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

5. Aircraft

5.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Lanier

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: HH-60

- Activity Description:

Airspace Operations

- Activity Start Date

Start Month: 1 **Start Year:** 2021

- Activity End Date

Indefinite: Yes End Month: N/A End Year: N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)				
VOC	0.082173				
SO_x	4.690085				
NO _x	52.703730				
CO	5.521948				
PM 10	6.990882				

Pollutant	Emissions Per Year (TONs)				
PM 2.5	6.282944				
Pb	0.000000				
NH ₃	0.000000				
CO ₂ e	14309.2				

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)				
VOC	0.082173				
SO_x	4.690085				
NO _x	52.703730				
CO	5.521948				
PM 10	6.990882				

Pollutant	Emissions Per Year (TONs)				
PM 2.5	6.282944				
Pb	0.000000				
NH ₃	0.000000				
CO ₂ e	14309.2				

5.2 Aircraft & Engines

5.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation: MV-22A
Engine Model: T406-AD-400
Primary Function: Transport - Bomber

Aircraft has After burn: No **Number of Engines:** 2

- Aircraft & Engine Surrogate

Is Aircraft & Engine a Surrogate? No

Original Aircraft Name: Original Engine Name:

5.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO_x	CO	PM 10	PM 2.5	CO_2e
Idle	362.00	0.10	1.06	4.15	8.35	1.58	1.42	3234
Approach	663.00	0.02	1.06	6.05	3.47	1.58	1.42	3234
Intermediate	948.00	0.02	1.06	7.87	1.82	1.58	1.42	3234
Military	2507.00	0.01	1.06	18.03	0.29	1.58	1.42	3234
After Burn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3234

5.3 Flight Operations

5.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft:

Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:

Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:

Number of Annual Trim Test(s) per Aircraft:

0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)

Taxi/Idle Out [Idle] (mins):0Takeoff [Military] (mins):42628Takeoff [After Burn] (mins):0Climb Out [Intermediate] (mins):159855Approach [Approach] (mins):10657Taxi/Idle In [Idle] (mins):0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used.)

- Trim Test

Idle (mins):0Approach (mins):0Intermediate (mins):0Military (mins):0AfterBurn (mins):0

5.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

LTO: Number of Landing and Take-off Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE\ IN} + AEM_{IDLE\ OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs)

AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

TGO: Number of Touch-and-Go Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs)

AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs)

AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs)

AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs)

AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs)

AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

5.4 Auxiliary Power Unit (APU)

5.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: No

- Auxiliary Power Unit (APU)

Number of APU per Aircraft Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
---	----------------	-------------	--------------

5.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
-------------	--------------	-----	-----------------	-----------------	----	-------	--------	-------------------

5.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)

APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour)

LTO: Number of LTOs

EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

6. Aircraft

6.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Lowndes

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: F-18

- Activity Description:

- Activity Start Date

Start Month: 1 Start Year: 2021

- Activity End Date

Indefinite: Yes End Month: N/A End Year: N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.035851
SO_x	0.542894
NO_x	8.722157
CO	0.788733
PM 10	0.804098

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.460948
Pb	0.000000
NH_3	0.000000
CO ₂ e	1656.3

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.035851

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.460948

SO_x	0.542894
NO_x	8.722157
CO	0.788733
PM 10	0.804098

Pb	0.000000
NH ₃	0.000000
CO ₂ e	1656.3

6.2 Aircraft & Engines

6.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation: TF/A-18A
Engine Model: F404-GE-400
Primary Function: Combat
Aircraft has After burn: Yes
Number of Engines: 2

- Aircraft & Engine Surrogate

Is Aircraft & Engine a Surrogate? No

Original Aircraft Name: Original Engine Name:

6.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO_x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	685.00	3.39	1.06	1.70	110.18	4.47	3.10	3234
Approach	3111.00	0.04	1.06	7.86	2.02	1.46	0.87	3234
Intermediate	6464.00	0.07	1.06	17.03	1.54	1.57	0.90	3234
Military	7739.00	0.02	1.06	25.83	1.48	1.61	0.89	3234
After Burn	15851.00	1.85	1.06	5.43	50.31	3.57	3.21	3234

6.3 Flight Operations

6.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft:

Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:

1 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:

0 Number of Annual Trim Test(s) per Aircraft:

0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)

Taxi/Idle Out [Idle] (mins):

Takeoff [Military] (mins):

O
Takeoff [After Burn] (mins):

Climb Out [Intermediate] (mins):

Approach [Approach] (mins):

O
Taxi/Idle In [Idle] (mins):

O

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used.)

Appendix D

- Trim Test

Idle (mins):0Approach (mins):0Intermediate (mins):0Military (mins):0AfterBurn (mins):0

6.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

LTO: Number of Landing and Take-off Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE\ IN} + AEM_{IDLE\ OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs)

AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

TGO: Number of Touch-and-Go Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs)

AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs)

AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs)

AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs)

AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

6.4 Auxiliary Power Unit (APU)

6.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

1144411	(0) (
Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer

6.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

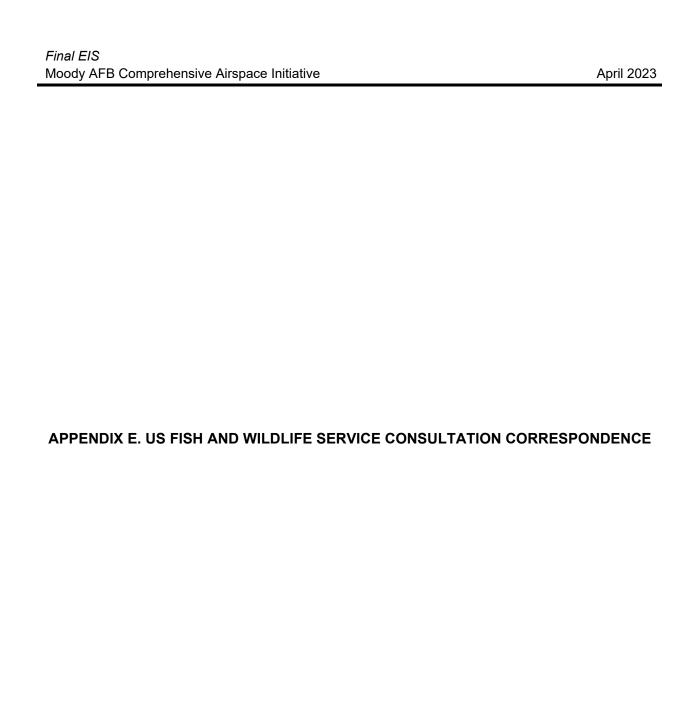
- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
•	Flow		-					_

6.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$


APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)

APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour)

LTO: Number of LTOs

EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

FORMAT PAGE

FORMAT PAGE

FORMAT PAGE

United States Department of the Interior

FISH AND WILDLIFE SERVICE Georgia Ecological Services Field Office 355 East Hancock Avenue Room 320 Athens, GA 30601 Phone: (706) 613-9493 Fax: (706) 613-6059

In Reply Refer To: January 14, 2020

Consultation Code: 04EG1000-2020-SLI-0885 Event Code: 04EG1000-2020-E-01633

Project Name: Moody Air Force Base Comprehensive Airspace Initiative

Subject: List of threatened and endangered species that may occur in your proposed project location, and/or may be affected by your proposed project

To Whom It May Concern:

This list identifies threatened, endangered, proposed and candidate species, as well as critical habitat, that may be affected by your proposed project. This list may change before your project is completed. Under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this list should be verified after 90 days. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation.

Bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.). Projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html).

Wind energy projects should follow the wind energy guidelines http://www.fws.gov/windenergy/ for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts of communication towers on migratory birds can be found under the "Bird Hazards" tab at: www.fws.gov/migratorybirds.

Attachment(s):

· Official Species List

Event Code: 04EG1000-2020-E-01633

1

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

Georgia Ecological Services Field Office

355 East Hancock Avenue Room 320 Athens, GA 30601 (706) 613-9493

This project's location is within the jurisdiction of multiple offices. Expect additional species list documents from the following offices, and expect that the species and critical habitats in each document reflect only those that fall in the office's jurisdiction:

North Florida Ecological Services Field Office

7915 Baymeadows Way, Suite 200 Jacksonville, FL 32256-7517 (904) 731-3336

Panama City Ecological Services Field Office

1601 Balboa Avenue Panama City, FL 32405-3792 (850) 769-0552

2

01/14/2020 Eyent Code: 04EG1000-2020-E-01633

Project Summary

Consultation Code: 04EG1000-2020-SLI-0885

Event Code: 04EG1000-2020-E-01633

Project Name: Moody Air Force Base Comprehensive Airspace Initiative

Project Type: MILITARY OPERATIONS / MANEUVERS

Project Description: The project is located in southern Georgia and northern Florida and

includes portions of the Moody Airspace Complex managed by Moody Air Force Base (AFB), Georgia. The Proposed Action is to configure new low-altitude Military Operations Areas (MOAs) immediately underneath and within the lateral confines of the existing Corsair North, Corsair South, Mustang, Thud, and Warhawk MOAs and Restricted Area R-3008C, and to lower the floor of Moody 2 North MOA in the Moody

Airspace Complex.

The number of flights or sorties using the Moody Airspace Complex varies from year to year depending on aircraft assignments, missions, and deployments. The Proposed Action or alternatives do not propose changes in aircraft or increases in the number of flights or sorties from the normal year-to-year variation. No changes in airfield operations at the Moody AFB airfield would occur. Further, the Proposed Action would not provide additional training operations at low altitudes. However, optimizing the airspace would result in the redistribution of aircraft operations from existing low-altitude SUAs (i.e., Moody 2 North MOA, Moody 2 South 32 MOA, and R-3008A, R-3008B, and R-3008C) to new low-altitude MOAs.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/31.69749999631937N83.57663209958707W

Event Code: 04EG1000-2020-E-01633

Counties: Jefferson, FL | Madison, FL | Atkinson, GA | Ben Hill, GA | Berrien, GA | Brooks, GA | Clinch, GA | Coffee, GA | Colquitt, GA | Cook, GA | Crisp, GA | Dooly, GA | Dougherty, GA | Irwin, GA | Lanier, GA | Lee, GA | Lowndes, GA | Mitchell, GA | Sumter, GA | Thomas, GA | Tift, GA | Turner, GA | Wilcox, GA | Worth, GA

E) ent Code: 04EG1000-2020-E-01633

4

Endangered Species Act Species

There is a total of 18 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain lish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

NOAA Fisheries, also known as the National Marine Fisheries Service (NMFS), is an
office of the National Oceanic and Atmospheric Administration within the Department of
Commerce.

Birds

NAME	STATUS
Red-cockaded Woodpecker <i>Picoides borealis</i> No critical habitat has been designated for this species.	Endangered
Species profile: https://ecos.fwn.gov/ecp/species/7614 Wood Stork Mycteria americana	Threatened
Population: AL, FL, GA, MS, NG, SC No critical habitat has been designated for this species.	Time taken ye
Species profile: <u>https://ecos.fws.gov/ecp/species/8477</u>	

Reptiles

NAME	STATUS
Eastern Indigo Snake Drymarchon corais couperi	Threatened
No critical habitat has been designated for this species.	
Species profile: https://ecos.fws.gov/ecp/species/646	
Gopher Tortoise Gopherus polyphemus	Candidate
Population: eastern	
No critical habitat has been designated for this species.	
Species profile: https://ecos.fws.gov/ecp/species/6994	

E) ent Code: 04EG1000-2020-E-01633

5

Amphibians

NAME	STATUS
Frosted Flatwoods Salamander Ambystoma cingulatum There is final critical habitat for this species. Your location is outside the critical habitat. Species profile: https://ecos.tws.gov/ecp/species/4981	Threatened
Reticulated Flat woods Salamander Ambystoma bishopi There is final critical habitat for this species. Your location is outside the critical habitat. Species profile: https://ecos.lws.gov/ecp/species/8939	Endangered
Clams	
NAME	STATUS
Fat Threeridge (mussel) Amblema neislerii There is final critical habitat for this species. Your location is outside the critical habitat. Species profile: https://ecos.fws.gov/eep/species/2574	Endangered
Gull Moccasinshell <i>Medionidus penicillotus</i> There is final critical habitat for this species. Your location overlaps the critical habitat. Species profile: https://ecos.fws.gov/ecp/species/7663	Endangered
Oval Pigtoe Pleurobema pyriforme There is final critical habitat for this species. Your location overlaps the critical habitat. Species profile: https://ecos.fws.gov/ecp/species/4132	Endangered
Purple Bankclimber (mussel) Elliptoideus sloatianus There is final critical habitat for this species. Your location overlaps the critical habitat. Species profile: https://ecos.foes.gov/ecp/species/7660	Threatened
Shinyrayed Pocketbook <i>Lampsilis subangulata</i> There is final critical habitat for this species. Your location overlaps the critical habitat. Species profile: https://ecos.fves.gov/ecp/species/6317	Endangered
Suwannee Moccasinshell <i>Medionidus walkeri</i> There is proposed critical habitat for this species. Your location overlaps the critical habitat.	Threatened

Appendix E E-8

Species profile: https://ecos.fws.gov/ecp/species/533

E) ent Code: 04EG1000-2020-E-01633

- 6

Flowering Plants

NAME	STATUS
American Chaffseed Schwalbea americana No critical habitat has been designated for this species. Species profile: https://ecos.tws.gov/ecp/species/1286	Endangered
Camby's Dropwort Oxypolis cambyi No critical habitat has been designated for this species. Species profile: https://ecos.lws.gov/ecp/species/7738	Endangered
Cooley's Meadowrue <i>Thalictrum cooleyi</i> No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/exp/species/1781	Endangered
Harperella Pülimnium nodosum No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/4739	Endangered
Pondborry Lindero melissifolia No critical habitat has been designated for this species. Species profile: https://ecos.hvs.gov/ecp/species/1279	Endangered
Relict Trillium Trillium reliquum No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/#4#9	Endangered

Critical habitats

There are 5 critical habitats wholly or partially within your project area under this office's jurisdiction.

NAME:	STATUS
Gulf Moccasinshell Medionidus penicillatus https://ecos.fws.gov/rep/species/7663//crithab	Final
Oval Pigtoe Pleurobema pyriforme https://ecos.fws.gov/ecp/species/4132#crithab	Final
Purple Bankclimber (mussel) Elliptoideus sloatianus https://ecos.fvs.gov/ecpspecies/7660//crithab	Final
Shinyrayed Pocketbook Lompsilis subangulato https://ecos.fws.gov/ecp/species/6517#crithab	Final
Suwannee Moccasinshell Medionidus walkeri https://ecos.fws.gov/ecp/species/533#crithab	Proposed

United States Department of the Interior

FISH AND WILDLIFE SERVICE North Florida Ecological Services Field Office 7915 Baymeadows Way, Suite 200 Jacksonville, FL 32256-7517 Phone: (904) 731-3336 Fax: (904) 731-3045

In Reply Refer To: January 14, 2020

Consultation Code: 04EF1000-2020-SLI-0299 Event Code: 04EF1000-2020-E-00485

Project Name: Moody Air Force Base Comprehensive Airspace Initiative

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 etseq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

Event Code: 04EF1000-2020-E-00485

2

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

- · Official Species List
- Migratory Birds

Event Code: 04EF1000-2020-E-00485

1

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

North Florida Ecological Services Field Office

7915 Baymeadows Way, Suite 200 Jacksonville, FL 32256-7517 (904) 731-3336

This project's location is within the jurisdiction of multiple offices. Expect additional species list documents from the following offices, and expect that the species and critical habitats in each document reflect only those that fall in the office's jurisdiction:

Georgia Ecological Services Field Office

355 East Hancock Avenue Room 320 Athens, GA 30601 (706) 613-9493

Panama City Ecological Services Field Office

1601 Balboa Avenue Panama City, FL 32405-3792 (850) 769-0552

2

01/14/2020 Event Code: 04EF1000-2020-E-00485

Project Summary

Consultation Code: 04EF1000-2020-SLI-0299

Event Code: 04EF1000-2020-E-00485

Project Name: Moody Air Force Base Comprehensive Airspace Initiative

Project Type: MILITARY OPERATIONS / MANEUVERS

Project Description: The project is located in southern Georgia and northern Florida and

includes portions of the Moody Airspace Complex managed by Moody Air Force Base (AFB), Georgia. The Proposed Action is to configure new low-altitude Military Operations Areas (MOAs) immediately underneath and within the lateral confines of the existing Corsair North, Corsair South, Mustang, Thud, and Warhawk MOAs and Restricted Area R-3008C, and to lower the floor of Moody 2 North MOA in the Moody

Airspace Complex.

The number of flights or sorties using the Moody Airspace Complex varies from year to year depending on aircraft assignments, missions, and deployments. The Proposed Action or alternatives do not propose changes in aircraft or increases in the number of flights or sorties from the normal year-to-year variation. No changes in airfield operations at the Moody AFB airfield would occur. Further, the Proposed Action would not provide additional training operations at low altitudes. However, optimizing the airspace would result in the redistribution of aircraft operations from existing low-altitude SUAs (i.e., Moody 2 North MOA, Moody 2 South 32 MOA, and R-3008A, R-3008B, and R-3008C) to new low-altitude MOAs.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/31.697499999631937N83.57663209958707W

Event Code: 04EF1000-2020-E-00485

Counties: Jefferson, FL | Madison, FL | Atkinson, GA | Ben Hill, GA | Berrien, GA | Brooks, GA | Clinch, GA | Coffee, GA | Colquitt, GA | Cook, GA | Crisp, GA | Dooly, GA | Dougherty, GA | Irwin, GA | Lanier, GA | Lee, GA | Lowndes, GA | Mitchell, GA | Sumter, GA | Thomas, GA | Tift, GA | Turner, GA | Wilcox, GA | Worth, GA

Event Code: 04EF1000-2020-E-00485

4

Endangered Species Act Species

There is a total of 6 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain lish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

NOAA Fisheries, also known as the National Marine Fisheries Service (NMFS), is an
office of the National Oceanic and Atmospheric Administration within the Department of
Commerce.

Birds

NAME	STATUS
Eastem Black Rail Lateralius jamaicensis ssp. jamaicensis	Proposed
No critical babitat has been designated for this species.	Threatened
Species profile: https://ecos.fws.gov/ecp/species/10477	
Wood Stork Mycteria americana	Threatened
Population: AL, FL, GA, MS, NC, SC	
No critical habitat has been designated for this species.	
Species profile: https://ecos.lws.gov/ecp/species/8477	

Reptiles

NAME	STATUS
Eastern Indigo Snake Drymarchon corais couperi	Threatened
No critical habitat has been designated for this species.	
Species profile: https://ecos.fws.gov/ecp/species/646	
Gopher Tortoise Gopherus polyphemus	Candidate
Population: eastern	
No critical habitat has been designated for this species.	
Species profile: https://ecos.fws.gov/ecp/species/6994	

01/14/2020 Event Code: 04EF 1000-2020-E-00485

Fishes

NAME STATUS
Atlantic Sturgeon (gulf Subspecies) Acipenser oxyrinchus (=oxyrhynchus) Threatened

desotoi

There is final critical habitat for this species, Your location is outside the critical habitat. Species profile: https://ecos.fws.gov/ecp/species/651

Clams

NAME STATUS

Suwannee Moccasinshell Medionidus walkeri

Threatened

There is proposed critical habitat for this species. Your location overlaps the critical habitat. Species profile: https://ecos.fws.gov/ecp/species/523

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

Event Code: 04EF1000-2020-E-00485

1

Migratory Birds

Certain birds are protected under the Migratory Bird Treaty Act^{L} and the Bald and Golden Eagle Protection Act^{L} .

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- The Bald and Golden Eagle Protection Act of 1940.
- 3. 50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)

The birds listed below are birds of particular concern either because they occur on the <u>USFWS</u> <u>Birds of Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME	BREEDING SEASON
American Kestrel l'alco sparverius paulus	Breeds Apr 1 to
This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation	Aug 31
Regions (BCRs) in the continental USA	55
Bachman's Sparrow Aimophilo oestivalis	Breeds May 1 to
This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA	Sep 30
and Alaska.	2014 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C
https://ecos.fws.gov/eep/species/6177	

2

NAME.	BREEDING SEASON
Bald Eagle Haliaeetus leucocephalus	Breeds Sep 1 to
This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for patential susceptibilities in offshore areas from certain types	Jul 31
of development or activities. https://ecos.fws.gov/ecp/species/1626	
Common Ground-dove Columbina passerina exigua	Breeds Feb 1 to
This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA	Dec 31
Lesser Yellowlegs Tringa flavipes	Breeds
This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	elsewhere
https://ecns.fws.gov/ecp/species/9679	
Prothonotary Warbler Protonotaria citrea	Breeds Apr 1 to
This is a Bird of Conservation Contern (BCC) throughout its range in the continental USA and Alaska.	Jul 31
Red-headed Woodpecker Melanerpes erythrocephalus	Breeds May 10
This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	to Sep 10
Swallow-tailed Kite Elanoides forficotus	Breeds Mar 10
This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	to Jun 30
https://ocns.fws.gov/rep/sprcies/8938	

Event Code: 04EF1000-2020-E-00485

Probability Of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (III)

Each green har represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12.4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

Event Code: 04EF1000-2020-E-00485

3

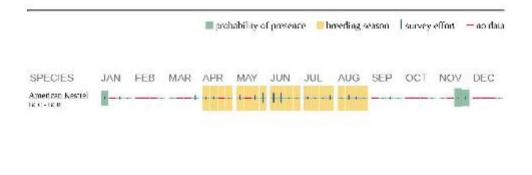
How is the probability of presence score calculated? The calculation is done in three steps:

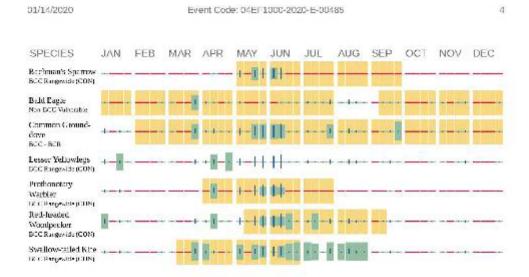
- The probability of presence for each week is calculated as the number of survey events in
 the week where the species was detected divided by the total number of survey events for
 that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee
 was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is
 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

Breeding Season (*)

Yellow bars denote a very liberal estimate of the time frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort (1)


Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.


No Data (-)

A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more spaces.

Additional information can be found using the following links:

- Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php
- Measures for avoiding and minimizing impacts to birds http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures.php
- Nationwide conservation measures for birds http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf

Migratory Birds FAQ

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures and/or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USI'WS <u>Birds of Conservation Concern</u> (<u>BCC</u>) and other species that may warrant special attention in your project location.

Event Code: 04EF1000-2020-E-00485

19

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network (AKN)</u>. The AKN data is based on a growing collection of <u>survey, banding, and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Fagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>AKN Phenology Tool</u>.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey</u>, <u>banding</u>, and <u>citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: The Cornell Lab of Ornithology All About Birds Bird Guide, or (if you are unsuccessful in locating the bird of interest there), the Cornell Lab of Ornithology Neotropical Birds guide. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands):
- "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on
 your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles)
 potential susceptibilities in offshore areas from certain types of development or activities
 (e.g. offshore energy development or longline lishing).

Event Code: 04EF 1000-2020-E-00485

6

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the Northeast Ocean Data Portal. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the NOAA NCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look. carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

United States Department of the Interior

FISH AND WILDLIFE SERVICE Panama City Ecological Services Field Office 1601 Balboa Avenue Panama City, FL 32405-3792 Phone: (850) 769-0552 Paic (850) 763-2177

Phone: (850) 769-0552 Fax: (850) 763-2177 http://www.fws.gow/panamacity/species/list.html http://www.fws.gow/panamacity/pedata.html

January 14, 2020

In Reply Refer To:

Consultation Code: 04EF3000-2020-SL1-0121

Event Code: 04EF3000-2020-E-00177

Project Name: Moody Air Force Base Comprehensive Airspace Initiative

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 etseq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

Event Code: 04EF3000-2020-E-00177

2

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers.htm; http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office. All correspondence should be submitted to panamacityregs@fws.gov.

Attachment(s):

Official Species List

Event Code: 04EF3000-2020-E-00177

1

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

Panama City Ecological Services Field Office

1601 Balboa Avenue Panama City, FL 32405-3792 (850) 769-0552

This project's location is within the jurisdiction of multiple offices. Expect additional species list documents from the following offices, and expect that the species and critical habitats in each document reflect only those that fall in the office's jurisdiction:

Georgia Ecological Services Field Office

355 East Hancock Avenue Room 320 Athens, GA 30601 (706) 613-9493

North Florida Ecological Services Field Office

7915 Baymeadows Way, Suite 200 Jacksonville, FL 32256-7517 (904) 731-3336

2

01/14/2020 Event Code: 04EF3000-2020-E-00177

Project Summary

Consultation Code: 04EF3000-2020-SLI-0121

Event Code: 04EF3000-2020-E-00177

Project Name: Moody Air Force Base Comprehensive Airspace Initiative

Project Type: MILITARY OPERATIONS / MANEUVERS

Project Description: The project is located in southern Georgia and northern Florida and

includes portions of the Moody Airspace Complex managed by Moody Air Force Base (AFB), Georgia. The Proposed Action is to configure new low-altitude Military Operations Areas (MOAs) immediately underneath and within the lateral confines of the existing Corsair North, Corsair South, Mustang, Thud, and Warhawk MOAs and Restricted Area R-3008C, and to lower the floor of Moody 2 North MOA in the Moody

Airspace Complex.

The number of flights or sorties using the Moody Airspace Complex varies from year to year depending on aircraft assignments, missions, and deployments. The Proposed Action or alternatives do not propose changes in aircraft or increases in the number of flights or sorties from the normal year-to-year variation. No changes in airfield operations at the Moody AFB airfield would occur. Further, the Proposed Action would not provide additional training operations at low altitudes. However, optimizing the airspace would result in the redistribution of aircraft operations from existing low-altitude SUAs (i.e., Moody 2 North MOA, Moody 2 South 32 MOA, and R-3008A, R-3008B, and R-3008C) to new low-altitude MOAs.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/31.69749999631937N83.57663209958707W

Event Code: 04EF3000-2020-E-00177

Counties: Jefferson, FL | Madison, FL | Atkinson, GA | Ben Hill, GA | Berrien, GA | Brooks, GA | Clinch, GA | Coffee, GA | Colquitt, GA | Cook, GA | Crisp, GA | Dooly, GA | Dougherty, GA | Irwin, GA | Lanier, GA | Lee, GA | Lowndes, GA | Mitchell, GA | Sumter, GA | Thomas, GA | Tift, GA | Turner, GA | Wilcox, GA | Worth, GA

Event Code: 04EF3000-2020-E-00177

4

Endangered Species Act Species

There is a total of 3 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain lish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

NOAA Fisheries, also known as the National Marine Fisheries Service (NMFS), is an
office of the National Oceanic and Atmospheric Administration within the Department of
Commerce.

Birds

NAME	STATUS
Wood Stork Mycteria americana	Threatened
Population: AL, FL, GA, MS, NC, SC No critical habitat has been designated for this species.	
Species profile: https://ecos.fws.gov/ecp/species/8477	

Reptiles

NAME	STATUS
Eastern Indigo Snake Drymarchon corais couperi	Threatened
No critical habitat has been designated for this species.	
Species profile: https://ecos.fws.gov/ecp/species/646	
Gopher Tortoise Gopherus polyphemus	Candidate
Population: eastern	

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

Appendix E E-28

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gnw/ecp/species/6994

Final EIS Moody AFB Comprehensive Airspace Initiative	April 2023
E-2. US Fish and Wildlife Service Endangered Species Act Consultation Corre	spondence

FORMAT PAGE

Section 7 Consultation Letter, USFWS, North Florida Ecological Services Field Office

DEPARTMENT OF THE AIR FORCE 23D CIVIL ENGINEER SQUADRON (ACC) MOODY AIR FORCE BASE GEORGIA

Mr. Gregory Lee 23 CES/CEIE 3485 Georgia Street Moody AFB GA 31699

D 1 JUN 2020

Ms. Annie Dziergowski North Florida Ecological Services Field Office 7915 Baymeadows Way, Suite 200 Jacksonville FL 32256-7517

Dear Ms. Dziergowski:

The United States Air Force (Air Force) requests informal Section 7 consultation under the Endangered Species Act (ESA) for the proposed Moody Air Force Base (AFB) Comprehensive Airspace Initiative (Consultation Code 04EF1000-2020-SLI-0299). Moody AFB has prepared an Environmental Impact Statement (EIS) to assess the potential environmental impacts associated with proposed additions and modifications to the Moody Airspace Complex (Figure 1), which overlies all or portions of 28 counties in south Georgia and north Florida. A total of 21 federally listed threatened or endangered species have the potential to occur in this area. The proposal will have no effect on fifteen of the listed plants, fish, or invertebrates. Further, the proposal will have no effect on five species that are not likely to be present. However, as explained below, the Air Force has determined that the proposed activity has the potential to cause a startle effect on nesting wood storks (*Mycteria americana*), and wood storks could be harmed by the ingestion of chaff cartridge components, even though the likelihood of this occurring is low. Therefore, the Air Force has determined that the proposal may affect, but is not likely to adversely affect, the wood stork and will have no effect on the other 20 species. We request your concurrence with these determinations.

The EIS was prepared in accordance with the National Environmental Policy Act (NEPA) of 1969, the Council on Environmental Quality regulations implementing NEPA, and the Air Force NEPA regulations. The Moody Airspace Complex consists primarily of mid- to higher-altitude special use airspace (SUA; 8,000 feet above mean sea level [MSL] up to 18,000 feet) with limited low-altitude SUA (less than 8,000 feet MSL). Aircrews of A-10C, A-29, HH-60G, and HC-130J aircraft assigned to Moody Air Force AFB, Georgia, have severely constrained access to existing low-altitude SUAs wherein they can conduct required training operations at low altitude to gain operational proficiency and meet their low-altitude close air support (CAS), personnel recovery (PR), and combat search and rescue (CSAR) mission objectives for combat readiness. As part of the proposed undertaking, the Comprehensive Airspace Initiative at Moody AFB would provide additional low-altitude Air Force-controlled SUA supporting the low-altitude training missions (CSAR, PR, CAS) for aircrews stationed at Moody AFB, which are currently limited to the Moody Airspace Complex's few existing, congested low-altitude SUAs.

Global Power for America

The Air Force has preliminarily identified three action alternatives to expand low-altitude training airspace at Moody AFB. All three alternatives would create new low-altitude Military Operations Areas (MOAs) beneath and within the lateral confines of existing MOAs and Restricted Areas of the Moody Airspace Complex (Figure 2). The three action alternatives are:

- Create new low-altitude MOAs with a floor of 1,000 feet above ground level (AGL) (Alternative 1);
- Create new low-altitude MOAs with a floor of 2,000 feet AGL (Alternative 2); and
- Create new low-altitude MOAs with a floor of 4,000 feet AGL (Alternative 3).

While the alternatives are independent of each other, the decision maker may choose to implement one alternative, a combination of low-altitude MOAs from among the three alternatives, or none of the alternatives based on the analysis provided in the EIS. Training within the low-altitude MOAs would include the use of chaff and flares, with flare use being limited to altitudes above 2,000 feet AGL. Urban CAS, helicopter landing zones, drop zones, and the use of training ordnance at the Grand Bay Range would continue unchanged under all three alternatives. There would be neither a change in the number of sorties at Moody AFB airfield nor would there be any change in the number of aircraft operations in the Moody Airspace Complex under any of the three alternatives. Further, no ground-disturbing activities are associated with any of the three alternatives.

Threatened, Endangered, and Candidate Species and Designated Critical Habitat

A review of the US Fish and Wildlife Service (USFWS) Information for Planning and Conservation System, Georgia Rare Element Natural Data Portal, Florida Fish and Wildlife Conservation Commission's list of threatened and endangered species, and the Moody AFB Integrated Natural Resources Management Plan identified 21 federally listed species that could occur within and below the proposed low-altitude MOAs (Table 1). However, as the proposal is to create and modify MOAs within the Moody Airspace Complex, which would redistribute military aircraft training operations, effects on listed species would be limited to aircraft movement, noise, and the use of defensive countermeasures (i.e., chaff and flares). Therefore, the proposal will have no effect on the 15 listed plants, fish, or invertebrates that will not be exposed to these activities. In addition, the proposal will have no effect on five species that are not likely to be present and may affect but is unlikely to affect one species. The potential for each listed species to be affected by the proposal is summarized in Table 1.

Table 1. Federally Protected Species with the Potential to Occur in the Proposed Low-Altitude Military Operations Areas

Common Name	Scientific Name	Legal Status	Potential to be Affected
	Birds		
Eastern black rail	Laterallus jamaicensis spp. jamaicensis	Proposed Threatened	Yes
Red-cockaded woodpecker	Picoides borealis	Endangered	Yes
Wood stork	Mycteria americana	Threatened	Yes

Common Name	Scientific Name	Legal Status	Potential to be Affected
	Amphibians		
Frosted flatwoods salamander	Ambystoma cingulatum	Threatened	Yes
Reticulated flatwoods salamander	Ambystoma bishop	Endangered	No
	Reptiles		
American alligator	Alligator mississippiensis	Threatened (S/A)	Yes
Eastern indigo snake	Drymarchon coupert	Threatened	Yes
Gopher tortoise	Gopherus polyphemus	Candidate	Yes
	Clams		
Fat threeridge (mussel)	Amblema neislerii	Endangered	No
Gulf moccasinshell	Medionidus penicillatus	Endangered	No
Oval pigtoe	Pleurobema pyriforme	Endangered	No
Purple bankclimber (mussel)	Elliptoideus sloatianus	Threatened	No
Shinyrayed pocketbook	ed pocketbook Lampsilis subangulata		No
Suwannee moccasinshell	Medionidus walkeri	Threatened	No
	Fish		
Gulf Sturgeon	Acipenser oxyrinchus desotoi	Threatened	No
	Plants		
American chaffseed	Schwalbea americana	Endangered	No
Canby's dropwort	Oxypolis canbyi	Endangered	No
Cooley's meadowrue	Thalictrum cooleyi	Endangered	No
Harperella	Ptilimnium nodosum	Endangered	No
Pondberry	Lindera melissifolia	Endangered	No
Relict trillium	Trillium reliquam	Endangered	No

Source: USFWS 2019 S/A –similarity of appearance

Designated critical habitat for four of the clam species overlaps with the proposed lowaltitude MOAs: Gulf moccasinshell (Medionidus penicillatus), oval pigtoc (Pleurobema pyriforme), purple bankclimber (Elliptoideus sloatianus), and shinyrayed pocketbook (Lampsilis subangulata). There is proposed critical habitat for the Suwannee moccasinshell (Medionidus walkeri).

Under the Proposed Action, there would be no ground-disturbing activities, and all potential impacts on biological resources would be associated with aircraft operations and the use of defensive countermeasures in the proposed low-altitude MOAs. Further, there would be no risk of wildland fires because flare use is limited to altitudes above 2,000 feet AGL and the use of flares is suspended when conditions are conducive to wildfires. Because there would be no on-

ground or ground-disturbing activities, there would be no effect on federally listed clams, including the fat threeridge (Amblema neislerii), Gulf moccasinshell, oval pigtoe, purple bankclimber, shinyrayed pocketbook, and Suwannee moccasinshell; on fishes, including the Gulf sturgeon (Acipenser oxyrinchus desotoi); and on plants, including American chaffseed (Schwalbea americana), Canby's dropwort (Oxypolis canbyi), Cooley's meadowrue (Thalictrum cooleyi), harperella (Ptilimnium nodosum), pondberry (Lindera melissifolia), and relict trillium (Trillium reliquum). Therefore, these species are not discussed further.

Eastern Black Rail. The eastern black rail (Laterallus jamaicensis spp. jamaicensis) is federally listed as proposed threatened. It is a small, secretive marsh bird that is broadly distributed. It lives in fresh and saltwater marshes in portions of the United States, Central America, and South America. Eastern black rail habitat can range in salinity from salt to brackish to fresh water. Eastern black rails are primarily found in coastal wetlands; however, there is no suitable habitat for the eastern black rail in wetlands beneath the proposed low-altitude MOAs. Further, no observations or detections of the species occurred during surveys at Moody AFB or on the Grand Bay Range in 2018 (Watts et al. 2018).

Red-Cockaded Woodpecker. The red-cockaded woodpecker is federally listed as endangered and could potentially occur in low numbers within mature pine forest habitat with sparse understory vegetation beneath the proposed low MOAs. However, there is very little mature pine forest habitat beneath the proposed low MOAs, and most pine forest is managed for timber and is harvested before it can reach a size and age class suitable to support the red-cockaded woodpecker. The documented populations of red-cockaded woodpeckers closest to the proposed low-altitude MOAs are in the Okefenokee National Wildlife Refuge.

Wood Stork. The wood stork is a federally threatened wading bird that occurs in the southeastern United States and across the Caribbean and into South America. Wood storks are mostly white with a head and neck lacking feathers. They nest colonially in rookeries. Wood storks forage for fish, frogs, crabs, and crustaceans in shallow water. Wood storks are known to occur throughout southern Georgia, including in the Carolina bay habitats proximate to Moody AFB. A total of nine wood stork rookeries are known to occur beneath the proposed Corsair North Low and Corsair South Low MOAs. No other wood stork rookeries have been recorded beneath the other proposed low-altitude MOAs.

Frosted Flatwoods Salamander. The frosted flatwoods salamander (Ambystoma cingulatum) is a federally threatened amphibian with a grey or black body with white spots. Its distribution is limited to longleaf and slash pine flatwoods with sandy soils. Its diet primarily consists of earthworms and spiders. Since 1990, only four sites in Georgia have had documented occurrences of the flatwoods salamander. There is limited suitable habitat beneath the proposed low-altitude MOAs for the frosted flatwoods salamander, but it is assumed to be present in mature flatwoods.

Reticulated Flatwoods Salamander. The reticulated flatwoods salamander (Ambystoma bishop!) is a federally endangered amphibian that is similar in appearance to the frosted flatwoods salamander, but there are more distinct white spots on the reticulated flatwoods salamander. Its distribution is also limited to longleaf and slash pine flatwoods with sandy soils west of the Apalachicola River – Flint River systems, and it primarily feeds on earthworms and

spiders. As reticulated flatwoods salamander distribution does not overlap with the proposed low-altitude MOAs it is assumed to be absent from the project area.

American Alligator. The American alligator (Alligator mississippiensis) is federally listed as threatened due to its similarity in appearance to the American crocodile (Crocodylus acutus). The American alligator was officially removed from the list of endangered species in 1987. This classification of the alligator in the ESA allows the USFWS to regulate the harvest and legal trade in the animals, their skins, and products made from them, as part of efforts to prevent the illegal take and trafficking of endangered "look alike" reptiles. Beyond harvest and legal trade regulations, there are no other regulatory requirements for this species under the ESA, and alligators are not recognized as an endangered or threatened species and are not typically considered in Section 7 ESA consultations with the USFWS for installation activities (Moody AFB 2018). The American alligator is a common reptile found throughout south Georgia and north Florida and is known to occur beneath all of the proposed low-altitude MOAs.

Eastern Indigo Snake. The eastern indigo snake (Drymarchon corais couperi) is a federally threatened reptile and a nonvenomous snake. It can grow to a length of approximately 8 feet. The snake primarily feeds on small mammals, birds, amphibians, and reptiles, as well as the eggs of amphibians and reptiles. Indigo snakes typically deposit their eggs in gopher tortoise (Gopherus polyphemus) burrows and are associated in distribution with gopher tortoises. They occur in pine flatwoods, hardwood forests, and areas around cypress (Taxodium distichum) swamps. Eastern indigo snakes are known to occur on the Grand Bay Range at Moody AFB and are expected to occur in suitable habitats beneath all of the proposed low-altitude MOAs.

Gopher Tortoise. The gopher tortoise is federally listed as a candidate species in southern Georgia and northern Florida and is the only species of tortoise that occurs east of the Mississippi River. The gopher tortoise is typically between 9 and 11 inches long with a tan, brown, or gray shell at maturity. Gopher tortoises spend the majority of their time in burrows that average 6.5 feet in depth. They feed on low-growing plants proximate to their burrows and occur in well-drained, sandy soils suitable for digging burrows. Gopher tortoises are known to occur on the Moody AFB Main Base and Grand Bay Range and are expected to occur in suitable habitats beneath all of the proposed low-altitude MOAs.

Determination of the Effects of the Proposed Action

The gopher tortoise and indigo snake are primarily associated with gopher tortoise burrows and occur in forested habitats. They would not be exposed to aircraft movement and operations or increased sound levels; therefore the Air Force has determined that aircraft operations in the proposed low-altitude MOAs associated with the Moody AFB comprehensive airspace initiative would have no effect on the gopher tortoise or indigo snake. The frosted flatwoods salamander would also occur in forested habitats primarily associated with aquatic environments. It would not be exposed to aircraft movement or increased sound levels from training operations in the proposed low-altitude MOAs; therefore, the Air Force has determined that the Moody AFB comprehensive airspace initiative would have no effect on the frosted flatwoods salamander. Further, the reticulated flatwoods salamander's distribution does not geographically overlap with the proposed low-altitude MOAs; therefore the Air Force has determined that the Moody AFB comprehensive airspace initiative would have no effect on the

reticulated flatwoods salamander. Based on the absence of the eastern black rail and the red-cockaded woodpecker in the proposed low-altitude MOAs where the action is proposed, and the lack of suitable habitat in the action area to support these two species, the Air Force has determined that the Moody AFB comprehensive airspace initiative would have no effect on the eastern black rail and red-cockaded woodpecker.

Under all three alternatives, noise associated with aircraft operations in the proposed lowaltitude MOAs would not change substantially. Under Alternative 1, where aircraft would
operate at the lowest altitudes of the three alternatives evaluated, sound levels would increase
from between 0.0 to 1.2 A-weighted decibels (dBA) day-night sound level (DNL) as a result of
aircraft operations in the Corsair North Low, Corsair South Low, Grand Bay, Moody 2 North,
Mustang Low, and Warhawk Low MOAs and would increase 2.4 dBA DNL in the Thud Low
MOA. Although there is an increase in sound levels in these proposed low-altitude MOAs, the
noise levels would not exceed 46.2 dBA DNL in any of the proposed low-altitude MOAs, which
is well below the threshold for noise impacts on wildlife (Manci et al. 1988). No supersonic
flights are proposed, and no impacts from sonic booms would occur. Therefore, noise from lowaltitude aircraft operations as a result of the Moody AFB Comprehensive Airspace Initiative
would not impact listed wildlife.

Effects on listed species could occur from flight operations at lower altitudes in the proposed low-altitude MOAs. These aircraft operations could affect listed species due to aircraft movement, bird/wildlife aircraft strikes, and use of defensive countermeasures at very low altitudes. For listed bird species, given the large area where training would occur, and that most low-altitude training would occur during daytime hours, the likelihood for listed birds to encounter aircraft during training operations is low. However, aircraft movement at altitudes at or below 1,000 feet over wood stork rookeries in the proposed Corsair North, Corsair South, Mustang, and Warhawk MOAs could have the potential to cause a startle effect in nesting wood storks. To minimize startle affects from aircraft movement and to reduce the risk of bird aircraft strike hazards, Moody AFB implements a 500-foot AGL exclusion zone over all known active wood stork rookeries as well as bald eagle nests. These exclusion zones would be updated annually and provided to all pilots operating at low altitudes in the Moody Airspace Complex. With the implementation of exclusion zones as well as adherence to the requirements of the Moody AFB bird/animal aircraft strike hazard management plan during all training operations, aircraft movement at low altitudes may affect but is not likely to adversely affect wood storks.

There is the potential for components of chaff and flares that remain after use to make their way to the water surface of wetlands and shallow aquatic environments where they could be ingested by wood storks. Chaff cartridges, chaff canisters, chaff components, and chaff and flare end caps and pistons would be released into the environment, where they would persist for long periods. Some species of waterbirds and seabirds are known to ingest plastic when it is mistaken for prey (Auman et al. 1997, Yamashita et al. 2011, Provencher et al. 2014). The ingestion of plastic such as chaff and flare compression pads or pistons by birds such as wood storks could cause gastrointestinal obstructions or hormonal changes leading to reproductive issues (Provencher et al. 2014). Unless consumed plastic pieces are regurgitated, the chaff and flare compression pads or pistons could cause digestive tract blockages and eventual starvation and be lethal to birds that forage in aquatic habitats such as wood storks; however, based on the available information, it is not possible to accurately estimate actual ingestion rates or responses

of individual bird species (Moser and Lee 1992); for example, it is possible that wood storks do not mistake these plastic components for prey and mistakenly consume them. Given that there would be no change in the quantity of chaff and flare used in the Moody Airspace Complex and the small number of chaff and flares that would be used over the large expanses of the proposed Corsair South Low, Mustang Low, and Warhawk Low MOAs through the redistribution of training operations, it is highly unlikely that wood storks would ever encounter chaff and flare components in aquatic environments of Carolina bays where they forage. Therefore, the use of chaff and flares in the proposed low-altitude MOAs as a result of training may affect but is not likely to adversely affect the wood stork as a result of Alternative 1.

Please note that we are also consulting with the Panama City and Georgia Ecological Services Field Offices. Therefore, I am requesting your participation in the review and comment process for those resources within your office's area of responsibility. Further, I am requesting written concurrence with our no effect determination on the federally listed birds: eastern black rail and red-cockaded woodpecker; reptiles: gopher tortoise and eastern indigo snake; amphibians: frosted flatwoods salamander and reticulated flatwoods salamander; clams: fat threeridge, Gulf moccasinshell, oval pigtoe, purple bankclimber, shinyrayed pocketbook, and Suwannee moccasinshell; the Gulf sturgeon; plants: American chaffseed, Canby's dropwort, Cooley's meadowrue, harperella, pondberry, and relict trillium; and our may affect but not likely to adversely affect determination on the federally listed wood stork. Please provide concurrence or any comments or additional information concerning the Proposed Action and alternatives within 30 days of the date of this letter to me at 23 CES/CEIE, 3485 Georgia Street, Moody AFB, Georgia 31699 or by email to gregory.lee.5@us.af.mil. Thank you in advance for your assistance in this effort.

Sincerely Sugg W. Lee

GREGORY W. LEE Environment Element Chief

Attachments

I. Figure 1. Moody Airspace Complex

Figure 2. Proposed Low-Altitude Military Operations Areas and Ecoregions beneath the Moody Airspace Complex

References

Auman, H. J., J. P. Ludwig, J. P. Giesy, and T. Colborn. 1997. Plastic Ingestion by Laysan Albatross Chicks on Sand Island, Midway Atoll, in 1994 and 1995. In G. Robinson and R. Gales (eds.), Albatross Biology and Conservation, pp. 239–244. Surrey Beatty and Sons, Chipping Norton.

Manci, K. M., D. N. Gladwin, R. Villella, and M. G Cavendish. 1988. Effects of Aircraft Noise and Sonic Booms on Domestic Animals and Wildlife: A Literature Synthesis. U.S. Fish and Wildlife Service National Ecology Research Center, Ft. Collins, Colorado. NERC-88/29. 88 pp.

Moody AFB. 2018. Integrated Natural Resources Management Plan.

Moser, M. L., and D. S. Lee. 1992. A Fourteen-Year Survey of Plastic Ingestion by Western North Atlantic Seabirds. Colonial Waterbirds 15(1):83-94.

Provencher, J., A. Bond, A. Hedd, W. Montevecchi, S. Muzaffar, S. Courchesne, H. Gilchrist, S. Jamieson, F. Merkel, K. Falk, J. Durinck, and M. Mallory. 2014. Prevalence of Marine Debris in Marine Birds from the North Atlantic. Marine Pollution Bulletin 84:411–417.

United States Fish and Wildlife Service (USFWS). 2019. Information for Planning and Consultation. https://ccos.fws.gov/ipac. Accessed December 2019.

Watts, B. D., B. J. Paxton., and F. M. Smith. 2018. Assessment of Black Rail Status in Georgia, Interim Report: Summer 2018. CCB Technical Reports. 293.

Yamashita, R., H. Takada, M. A. Fukuwaka, and Y. Watanuki. 2011. Physical and Chemical Effects of Ingested Plastic Debris on Short-Tailed Shearwaters, *Puffinus tenuirostris*, in the North Pacific Ocean. Marine Pollution Bulletin 62(12):2845–2849.

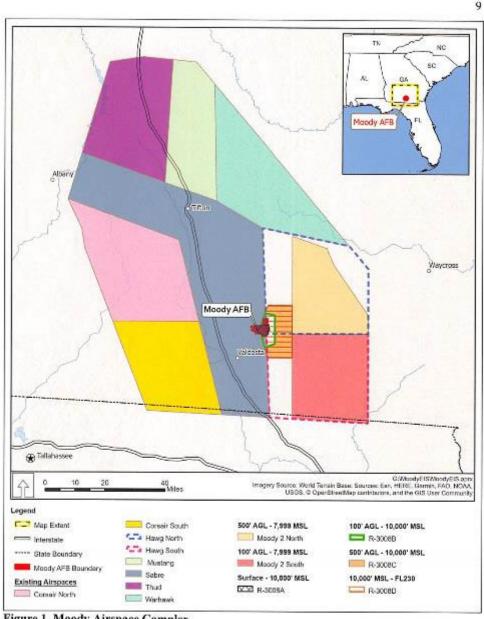


Figure 1. Moody Airspace Complex

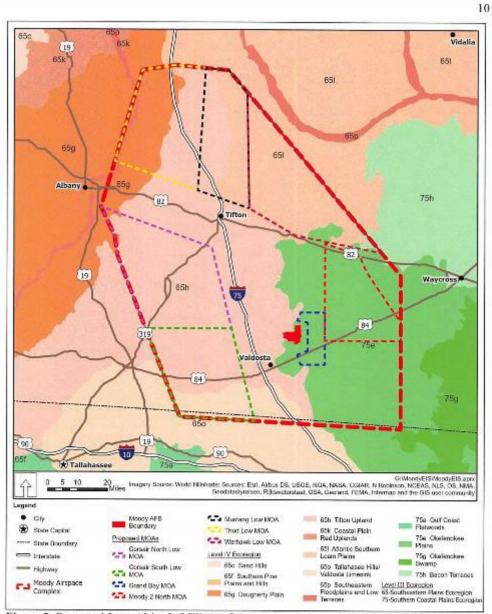


Figure 2. Proposed Low-Altitude Military Operations Areas and Ecoregions beneath the Moody Airspace Complex

Section 7 Consultation Letter, USFWS, Georgia Ecological Services Field Office

DEPARTMENT OF THE AIR FORCE 23D CIVIL ENGINEER SQUADRON (ACC) MOODY AIR FORCE BASE GEORGIA

Mr. Gregory Lee 23 CES/CEIE 3485 Georgia Street Moody AFB GA 31699

0 1 JUN 2020

Ms. Gail Martinez US Fish and Wildlife Service Georgia Ecological Services Field Office 4980 Wildlife Drive NE Townsend GA 31331

Dear Ms. Martinez:

The United States Air Force (Air Force) requests informal Section 7 consultation under the Endangered Species Act (ESA) for the proposed Moody Air Force Base (AFB) Comprehensive Airspace Initiative (Consultation Code 04EF1000-2020-SLI-0299). Moody AFB has prepared an Environmental Impact Statement (EIS) to assess the potential environmental impacts associated with proposed additions and modifications to the Moody Airspace Complex (Figure 1), which overlies all or portions of 28 counties in south Georgia and north Florida. A total of 21 federally listed threatened or endangered species have the potential to occur in this area. The proposal will have no effect on fifteen of the listed plants, fish, or invertebrates. Further, the proposal will have no effect on five species that are not likely to be present. However, as explained below, the Air Force has determined that the proposed activity has the potential to cause a startle effect on nesting wood storks (Mycteria americana), and wood storks could be harmed by the ingestion of chaff cartridge components, even though the likelihood of this occurring is low. Therefore, the Air Force has determined that the proposal may affect, but is not likely to adversely affect, the wood stork and will have no effect on the other 20 species. We request your concurrence with these determinations.

The EIS was prepared in accordance with the National Environmental Policy Act (NEPA) of 1969, the Council on Environmental Quality regulations implementing NEPA, and the Air Force NEPA regulations. The Moody Airspace Complex consists primarily of mid- to higher-altitude special use airspace (SUA; 8,000 feet above mean sea level [MSL] up to 18,000 feet) with limited low-altitude SUA (less than 8,000 feet MSL). Aircrews of A-10C, A-29, HH-60G, and HC-130J aircraft assigned to Moody Air Force AFB, Georgia, have severely constrained access to existing low-altitude SUAs wherein they can conduct required training operations at low altitude to gain operational proficiency and meet their low-altitude close air support (CAS), personnel recovery (PR), and combat search and rescue (CSAR) mission objectives for combat readiness. As part of the proposed undertaking, the Comprehensive Airspace Initiative at Moody AFB would provide additional low-altitude Air Force-controlled SUA supporting the low-

Global Power for America

altitude training missions (CSAR, PR, CAS) for aircrews stationed at Moody AFB, which are currently limited to the Moody Airspace Complex's few existing, congested low-altitude SUAs.

The Air Force has preliminarily identified three action alternatives to expand low-altitude training airspace at Moody AFB. All three alternatives would create new low-altitude Military Operations Areas (MOAs) beneath and within the lateral confines of existing MOAs and Restricted Areas of the Moody Airspace Complex (Figure 2). The three action alternatives are:

- Create new low-altitude MOAs with a floor of 1,000 feet above ground level (AGL) (Alternative 1);
- Create new low-altitude MOAs with a floor of 2,000 feet AGL (Alternative 2); and
- Create new low-altitude MOAs with a floor of 4,000 feet AGL (Alternative 3).

While the alternatives are independent of each other, the decision maker may choose to implement one alternative, a combination of low-altitude MOAs from among the three alternatives, or none of the alternatives based on the analysis provided in the EIS. Training within the low-altitude MOAs would include the use of chaff and flares, with flare use being limited to altitudes above 2,000 feet AGL. Urban CAS, helicopter landing zones, drop zones, and the use of training ordnance at the Grand Bay Range would continue unchanged under all three alternatives. There would be neither a change in the number of sorties at Moody AFB airfield nor would there be any change in the number of aircraft operations in the Moody Airspace Complex under any of the three alternatives. Further, no ground-disturbing activities are associated with any of the three alternatives.

Threatened, Endangered, and Candidate Species and Designated Critical Habitat

A review of the US Fish and Wildlife Service (USFWS) Information for Planning and Conservation System, Georgia Rare Element Natural Data Portal, Florida Fish and Wildlife Conservation Commission's list of threatened and endangered species, and the Moody AFB Integrated Natural Resources Management Plan identified 21 federally listed species that could occur within and below the proposed low-altitude MOAs (Table 1). However, as the proposal is to create and modify MOAs within the Moody Airspace Complex, which would redistribute military aircraft training operations, effects on listed species would be limited to aircraft movement, noise, and the use of defensive countermeasures (i.e., chaff and flares). Therefore, the proposal will have no effect on the 15 listed plants, fish, or invertebrates that will not be exposed to these activities. In addition, the proposal will have no effect on five species that are not likely to be present and may affect but is unlikely to affect one species. The potential for each listed species to be affected by the proposal is summarized in Table 1.

Table 1. Federally Protected Species with the Potential to Occur in the Proposed Low-Altitude Military Operations Areas

Common Name	Scientific Name	Legal Status	Potential to be Affected
	Birds		
Eastern black rail	Laterallus jamaicensis spp. jamaicensis	Proposed Threatened	Yes

Common Name	Scientific Name	Legal Status	Potential to be Affected
Red-cockaded woodpecker	Picoides borealls	Endangered	Yes
Wood stork	Mycteria americana	Threatened	Yes
	Amphibians		
Frosted flatwoods salamander	Ambystoma cingulatum	Threatened	Yes
Reticulated flatwoods salamander	Ambystoma bishop	Endangered	No
	Reptiles	1	
American alligator	Alligator mississippiensis	Threatened (S/A)	Yes
Eastern indigo snake	Drymarchon couperi	Threatened	Yes
Gopher tortoise	Gopherus polyphemus	Candidate	Yes
	Clams		
Fat threeridge (mussel)	Amblema neislerii	Endangered	No
Gulf moccasinshell	Medionidus penicillatus	Endangered	No
Oval pigtoe	Pleurobema pyriforme	Endangered	No
Purple bankelimber (mussel)	Elliptoideus sloatianus	Threatened	No
Shinyrayed pocketbook	Lampsilis subangulata	Endangered	No
Suwannee moccasinshell	Medionidus walkeri	Threatened	No
	Fish		
Gulf Sturgeon	Acipenser oxyrinchus desotoi	Threatened	No
	Plants		
American chaffseed	Schwalbea americana	Endangered	No
Canby's dropwort	Oxypolis canbyi	Endangered	No
Cooley's meadowrue	Thalictrum cooleyi	Endangered	No
Harperella	Ptilimnium nodosum	Endangered	No
Pondberry	Lindera melissifolia	Endangered	No
Relict trillium	Trillison reliquum	Endangered	No

S/A –similarity of appearance

Designated critical habitat for four of the clam species overlaps with the proposed lowaltitude MOAs: Gulf moccasinshell (Medionidus penicillatus), oval pigtoe (Pleurobema pyriforme), purple bankelimber (Elliptoideus sloatianus), and shinyrayed pocketbook (Lampsilis subangulata). There is proposed critical habitat for the Suwannee moccasinshell (Medionidus walkeri).

Under the Proposed Action, there would be no ground-disturbing activities, and all potential impacts on biological resources would be associated with aircraft operations and the use of defensive countermeasures in the proposed low-altitude MOAs. Further, there would be no risk

of wildland fires because flare use is limited to altitudes above 2,000 feet AGL and the use of flares is suspended when conditions are conducive to wildfires. Because there would be no onground or ground-disturbing activities, there would be no effect on federally listed clams, including the fat threeridge (Amblema neislerii), Gulf moccasinshell, oval pigtoe, purple bankclimber, shinyrayed pocketbook, and Suwannee moccasinshell; on fishes, including the Gulf sturgeon (Acipenser oxyrinchus desotoi); and on plants, including American chaffseed (Schwalbea americana), Canby's dropwort (Oxypolis canbyi), Cooley's meadowrue (Thalictrum cooleyi), harperella (Ptilimnium nodosum), pondberry (Lindera melissifolia), and relict trillium (Trillium reliquum). Therefore, these species are not discussed further.

Eastern Black Rail. The eastern black rail (Laterallus jamaicensis spp. jamaicensis) is federally listed as proposed threatened. It is a small, secretive marsh bird that is broadly distributed. It lives in fresh and saltwater marshes in portions of the United States, Central America, and South America. Eastern black rail habitat can range in salinity from salt to brackish to fresh water. Eastern black rails are primarily found in coastal wetlands; however, there is no suitable habitat for the eastern black rail in wetlands beneath the proposed low-altitude MOAs. Further, no observations or detections of the species occurred during surveys at Moody AFB or on the Grand Bay Range in 2018 (Watts et al. 2018).

Red-Cockaded Woodpecker. The red-cockaded woodpecker is federally listed as endangered and could potentially occur in low numbers within mature pine forest habitat with sparse understory vegetation beneath the proposed low MOAs. However, there is very little mature pine forest habitat beneath the proposed low MOAs, and most pine forest is managed for timber and is harvested before it can reach a size and age class suitable to support the red-cockaded woodpecker. The documented populations of red-cockaded woodpeckers closest to the proposed low-altitude MOAs are in the Okefenokee National Wildlife Refuge.

Wood Stork. The wood stork is a federally threatened wading bird that occurs in the southeastern United States and across the Caribbean and into South America. Wood storks are mostly white with a head and neck lacking feathers. They nest colonially in rookeries. Wood storks forage for fish, frogs, crabs, and crustaceans in shallow water. Wood storks are known to occur throughout southern Georgia, including in the Carolina bay habitats proximate to Moody AFB. A total of nine wood stork rookeries are known to occur beneath the proposed Corsair North Low and Corsair South Low MOAs. No other wood stork rookeries have been recorded beneath the other proposed low-altitude MOAs.

Frosted Flatwoods Salamander. The frosted flatwoods salamander (Ambystoma cingulatum) is a federally threatened amphibian with a grey or black body with white spots. Its distribution is limited to longleaf and slash pine flatwoods with sandy soils. Its diet primarily consists of earthworms and spiders. Since 1990, only four sites in Georgia have had documented occurrences of the flatwoods salamander. There is limited suitable habitat beneath the proposed low-altitude MOAs for the frosted flatwoods salamander, but it is assumed to be present in mature flatwoods.

Reticulated Flatwoods Salamander. The reticulated flatwoods salamander (Ambystoma bishopi) is a federally endangered amphibian that is similar in appearance to the frosted flatwoods salamander, but there are more distinct white spots on the reticulated flatwoods

salamander. Its distribution is also limited to longleaf and slash pine flatwoods with sandy soils west of the Apalachicola River – Flint River systems, and it primarily feeds on earthworms and spiders. As reticulated flatwoods salamander distribution does not overlap with the proposed low-altitude MOAs it is assumed to be absent from the project area.

American Alligator. The American alligator (Alligator mississippiensis) is federally listed as threatened due to its similarity in appearance to the American crocodile (Crocodylus acutus). The American alligator was officially removed from the list of endangered species in 1987. This classification of the alligator in the ESA allows the USFWS to regulate the harvest and legal trade in the animals, their skins, and products made from them, as part of efforts to prevent the illegal take and trafficking of endangered "look alike" reptiles. Beyond harvest and legal trade regulations, there are no other regulatory requirements for this species under the ESA, and alligators are not recognized as an endangered or threatened species and are not typically considered in Section 7 ESA consultations with the USFWS for installation activities (Moody AFB 2018). The American alligator is a common reptile found throughout south Georgia and north Florida and is known to occur beneath all of the proposed low-altitude MOAs.

Eastern Indigo Snake. The eastern indigo snake (Drymarchon corais couperi) is a federally threatened reptile and a nonvenomous snake. It can grow to a length of approximately 8 feet. The snake primarily feeds on small mammals, birds, amphibians, and reptiles, as well as the eggs of amphibians and reptiles. Indigo snakes typically deposit their eggs in gopher tortoise (Gopherus polyphemus) burrows and are associated in distribution with gopher tortoises. They occur in pine flatwoods, hardwood forests, and areas around cypress (Taxodium distichum) swamps. Eastern indigo snakes are known to occur on the Grand Bay Range at Moody AFB and are expected to occur in suitable habitats beneath all of the proposed low-altitude MOAs.

Gopher Tortoise. The gopher tortoise is federally listed as a candidate species in southern Georgia and northern Florida and is the only species of tortoise that occurs cast of the Mississippi River. The gopher tortoise is typically between 9 and 11 inches long with a tan, brown, or gray shell at maturity. Gopher tortoises spend the majority of their time in burrows that average 6.5 feet in depth. They feed on low-growing plants proximate to their burrows and occur in well-drained, sandy soils suitable for digging burrows. Gopher tortoises are known to occur on the Moody AFB Main Base and Grand Bay Range and are expected to occur in suitable habitats beneath all of the proposed low-altitude MOAs.

Determination of the Effects of the Proposed Action

The gopher tortoise and indigo snake are primarily associated with gopher tortoise burrows and occur in forested habitats. They would not be exposed to aircraft movement and operations or increased sound levels; therefore the Air Force has determined that aircraft operations in the proposed low-altitude MOAs associated with the Moody AFB comprehensive airspace initiative would have no effect on the gopher tortoise or indigo snake. The frosted flatwoods salamander would also occur in forested habitats primarily associated with aquatic environments. It would not be exposed to aircraft movement or increased sound levels from training operations in the proposed low-altitude MOAs; therefore, the Air Force has determined that the Moody AFB comprehensive airspace initiative would have no effect on the frosted flatwoods salamander. Further, the reticulated flatwoods salamander's distribution does not

geographically overlap with the proposed low-altitude MOAs; therefore the Air Force has determined that the Moody AFB comprehensive airspace initiative would have no effect on the reticulated flatwoods salamander. Based on the absence of the eastern black rail and the red-cockaded woodpecker in the proposed low-altitude MOAs where the action is proposed, and the lack of suitable habitat in the action area to support these two species, the Air Force has determined that the Moody AFB comprehensive airspace initiative would have no effect on the eastern black rail and red-cockaded woodpecker.

Under all three alternatives, noise associated with aircraft operations in the proposed lowaltitude MOAs would not change substantially. Under Alternative 1, where aircraft would
operate at the lowest altitudes of the three alternatives evaluated, sound levels would increase
from between 0.0 to 1.2 A-weighted decibels (dBA) day-night sound level (DNL) as a result of
aircraft operations in the Corsair North Low, Corsair South Low, Grand Bay, Moody 2 North,
Mustang Low, and Warhawk Low MOAs and would increase 2.4 dBA DNL in the Thud Low
MOA. Although there is an increase in sound levels in these proposed low-altitude MOAs, the
noise levels would not exceed 46.2 dBA DNL in any of the proposed low-altitude MOAs, which
is well below the threshold for noise impacts on wildlife (Manci et al. 1988). No supersonic
flights are proposed, and no impacts from sonic booms would occur. Therefore, noise from lowaltitude aircraft operations as a result of the Moody AFB Comprehensive Airspace Initiative
would not impact listed wildlife.

Effects on listed species could occur from flight operations at lower altitudes in the proposed low-altitude MOAs. These aircraft operations could affect listed species due to aircraft movement, bird/wildlife aircraft strikes, and use of defensive countermeasures at very low altitudes. For listed bird species, given the large area where training would occur, and that most low-altitude training would occur during daytime hours, the likelihood for listed birds to encounter aircraft during training operations is low. However, aircraft movement at altitudes at or below 1,000 feet over wood stork rookeries in the proposed Corsair North, Corsair South, Mustang, and Warhawk MOAs could have the potential to cause a startle effect in nesting wood storks. To minimize startle affects from aircraft movement and to reduce the risk of bird aircraft strike hazards, Moody AFB implements a 500-foot AGL exclusion zone over all known active wood stork rookeries as well as bald eagle nests. These exclusion zones would be updated annually and provided to all pilots operating at low altitudes in the Moody Airspace Complex. With the implementation of exclusion zones as well as adherence to the requirements of the Moody AFB bird/animal aircraft strike hazard management plan during all training operations, aircraft movement at low altitudes may affect but is not likely to adversely affect wood storks.

There is the potential for components of chaff and flares that remain after use to make their way to the water surface of wetlands and shallow aquatic environments where they could be ingested by wood storks. Chaff cartridges, chaff canisters, chaff components, and chaff and flare end caps and pistons would be released into the environment, where they would persist for long periods. Some species of waterbirds and seabirds are known to ingest plastic when it is mistaken for prey (Auman et al. 1997, Yamashita et al. 2011, Provencher et al. 2014). The ingestion of plastic such as chaff and flare compression pads or pistons by birds such as wood storks could cause gastrointestinal obstructions or hormonal changes leading to reproductive issues (Provencher et al. 2014). Unless consumed plastic pieces are regurgitated, the chaff and flare compression pads or pistons could cause digestive tract blockages and eventual starvation and be

lethal to birds that forage in aquatic habitats such as wood storks; however, based on the available information, it is not possible to accurately estimate actual ingestion rates or responses of individual bird species (Moser and Lee 1992); for example, it is possible that wood storks do not mistake these plastic components for prey and mistakenly consume them. Given that there would be no change in the quantity of chaff and flare used in the Moody Airspace Complex and the small number of chaff and flares that would be used over the large expanses of the proposed Corsair South Low, Mustang Low, and Warhawk Low MOAs through the redistribution of training operations, it is highly unlikely that wood storks would ever encounter chaff and flare components in aquatic environments of Carolina bays where they forage. Therefore, the use of chaff and flares in the proposed low-altitude MOAs as a result of training may affect but is not likely to adversely affect the wood stork as a result of Alternative 1.

Please note that we are also consulting with the Panama City and North Florida Ecological Services Field Offices. Therefore, I am requesting your participation in the review and comment process for those resources within your office's area of responsibility. Further, I am requesting written concurrence with our no effect determination on the federally listed birds: castern black rail and red-cockaded woodpecker; reptiles: gopher tortoise and eastern indigo snake; amphibians: frosted flatwoods salamander and reticulated flatwoods salamander; clams: fat threeridge, Gulf moccasinshell, oval pigtoe, purple bankclimber, shinyrayed pocketbook, and Suwannee moccasinshell; the Gulf sturgeon; plants: American chaffseed, Canby's dropwort, Cooley's meadowrue, harperella, pondberry, and relict trillium; and our may affect but not likely to adversely affect determination on the federally listed wood stork. Please provide concurrence or any comments or additional information concerning the Proposed Action and alternatives within 30 days of the date of this letter to me at 23 CES/CEIE, 3485 Georgia Street, Moody AFB, Georgia 31699 or by email to gregory.lee.5@us.af.mil. Thank you in advance for your assistance in this effort.

Sincerely

GREGORY W. LEE Environment Element Chief

Tugny W. Lee

Attachments

- 1. Figure 1. Moody Airspace Complex
- Figure 2. Proposed Low-Altitude Military Operations Areas and Ecoregions beneath the Moody Airspace Complex

References

Auman, H. J., J. P. Ludwig, J. P. Giesy, and T. Colborn. 1997. Plastic Ingestion by Laysan Albatross Chicks on Sand Island, Midway Atoll, in 1994 and 1995. In G. Robinson and R. Gales (eds.), Albatross Biology and Conservation, pp. 239–244. Surrey Beatty and Sons, Chipping Norton.

Manci, K. M., D. N. Gladwin, R. Villella, and M. G Cavendish. 1988. Effects of Aircraft Noise and Sonic Booms on Domestic Animals and Wildlife: A Literature Synthesis. U.S. Fish and Wildlife Service National Ecology Research Center, Ft. Collins, Colorado. NERC-88/29. 88 pp.

Moody AFB. 2018. Integrated Natural Resources Management Plan.

Moser, M. L., and D. S. Lee. 1992. A Fourteen-Year Survey of Plastic Ingestion by Western North Atlantic Seabirds. Colonial Waterbirds 15(1):83-94.

Provencher, J., A. Bond, A. Hedd, W. Montevecchi, S. Muzaffar, S. Courchesne, H. Gilchrist, S. Jamieson, F. Merkel, K. Falk, J. Durinck, and M. Mallory. 2014. Prevalence of Marine Debris in Marine Birds from the North Atlantic. Marine Pollution Bulletin 84:411–417.

United States Fish and Wildlife Service (USFWS). 2019. Information for Planning and Consultation. https://ecos.fws.gov/ipac. Accessed December 2019.

Watts, B. D., B. J. Paxton., and F. M. Smith. 2018. Assessment of Black Rail Status in Georgia, Interim Report: Summer 2018. CCB Technical Reports. 293.

Yamashita, R., H. Takada, M. A. Fukuwaka, and Y. Watanuki. 2011. Physical and Chemical Effects of Ingested Plastic Debris on Short-Tailed Shearwaters, *Puffinus tenuirostris*, in the North Pacific Ocean. Marine Pollution Bulletin 62(12):2845–2849.

Letter from Moody AFB to the US Fish and Wildlife Service requesting concurrence under Section 7 of the Endangered Species Act (continued)

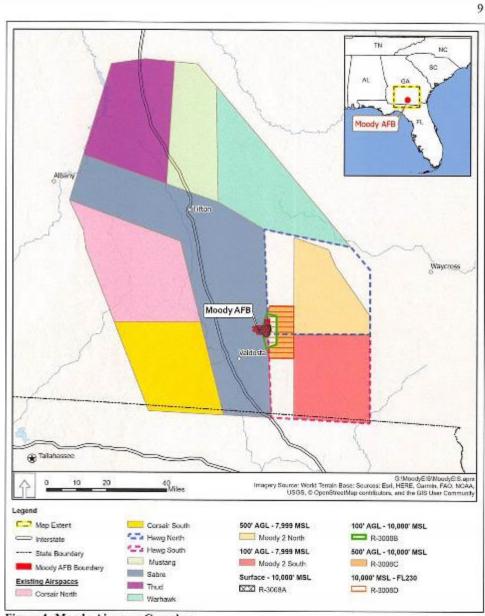


Figure 1. Moody Airspace Complex

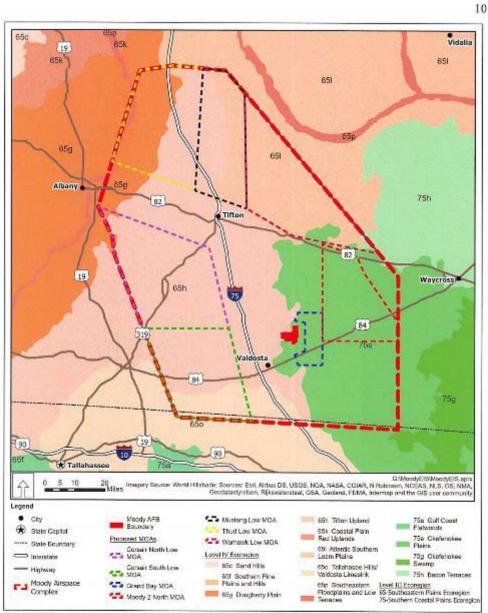


Figure 2. Proposed Low-Altitude Military Operations Areas and Ecoregions beneath the Moody Airspace Complex

Section 7 Consultation Letter, USFWS, Panama City Ecological Services Field Office

DEPARTMENT OF THE AIR FORCE 23D CIVIL ENGINEER SQUADRON (ACC) MOODY AIR FORCE BASE GEORGIA

Mr. Gregory Lee 23 CES/CEIE 3485 Georgia Street Moody AFB GA 31699 0 1 JUN 2020

Ms. Lisa Yarbrough Panama City Ecological Services Field Office 1601 Balboa Avenue Panama City, FL 32405-3792

Dear Ms. Yarbrough:

The United States Air Force (Air Force) requests informal Section 7 consultation under the Endangered Species Act (ESA) for the proposed Moody Air Force Base (AFB) Comprehensive Airspace Initiative (Consultation Code 04EF1000-2020-SLI-0299). Moody AFB has prepared an Environmental Impact Statement (EIS) to assess the potential environmental impacts associated with proposed additions and modifications to the Moody Airspace Complex (Figure 1), which overlies all or portions of 28 counties in south Georgia and north Florida. A total of 21 federally listed threatened or endangered species have the potential to occur in this area. The proposal will have no effect on fifteen of the listed plants, fish, or invertebrates. Further, the proposal will have no effect on five species that are not likely to be present. However, as explained below, the Air Force has determined that the proposed activity has the potential to cause a startle effect on nesting wood storks (*Mycteria americana*), and wood storks could be harmed by the ingestion of chaff cartridge components, even though the likelihood of this occurring is low. Therefore, the Air Force has determined that the proposal may affect, but is not likely to adversely affect, the wood stork and will have no effect on the other 20 species. We request your concurrence with these determinations.

The EIS was prepared in accordance with the National Environmental Policy Act (NEPA) of 1969, the Council on Environmental Quality regulations implementing NEPA, and the Air Force NEPA regulations. The Moody Airspace Complex consists primarily of mid- to higher-altitude special use airspace (SUA; 8,000 feet above mean sea level [MSL] up to 18,000 feet) with limited low-altitude SUA (less than 8,000 feet MSL). Aircrews of A-10C, A-29, HH-60G, and HC-130J aircraft assigned to Moody Air Force AFB, Georgia, have severely constrained access to existing low-altitude SUAs wherein they can conduct required training operations at low altitude to gain operational proficiency and meet their low-altitude close air support (CAS), personnel recovery (PR), and combat search and rescue (CSAR) mission objectives for combat readiness. As part of the proposed undertaking, the Comprehensive Airspace Initiative at Moody AFB would provide additional low-altitude Air Force-controlled SUA supporting the low-altitude training missions (CSAR, PR, CAS) for aircrews stationed at Moody AFB, which are currently limited to the Moody Airspace Complex's few existing, congested low-altitude SUAs.

Global Power for America

The Air Force has preliminarily identified three action alternatives to expand low-altitude training airspace at Moody AFB. All three alternatives would create new low-altitude Military Operations Areas (MOAs) beneath and within the lateral confines of existing MOAs and Restricted Areas of the Moody Airspace Complex (Figure 2). The three action alternatives are:

- Create new low-altitude MOAs with a floor of 1,000 feet above ground level (AGL) (Alternative 1);
- Create new low-altitude MOAs with a floor of 2,000 feet AGL (Alternative 2); and
- Create new low-altitude MOAs with a floor of 4,000 feet AGL (Alternative 3).

While the alternatives are independent of each other, the decision maker may choose to implement one alternative, a combination of low-altitude MOAs from among the three alternatives, or none of the alternatives based on the analysis provided in the EIS. Training within the low-altitude MOAs would include the use of chaff and flares, with flare use being limited to altitudes above 2,000 feet AGL. Urban CAS, helicopter landing zones, drop zones, and the use of training ordnance at the Grand Bay Range would continue unchanged under all three alternatives. There would be neither a change in the number of sorties at Moody AFB airfield nor would there be any change in the number of aircraft operations in the Moody Airspace Complex under any of the three alternatives. Further, no ground-disturbing activities are associated with any of the three alternatives.

Threatened, Endangered, and Candidate Species and Designated Critical Habitat

A review of the US Fish and Wildlife Service (USFWS) Information for Planning and Conservation System, Georgia Rare Element Natural Data Portal, Florida Fish and Wildlife Conservation Commission's list of threatened and endangered species, and the Moody AFB Integrated Natural Resources Management Plan identified 21 federally listed species that could occur within and below the proposed low-altitude MOAs (Table 1). However, as the proposal is to create and modify MOAs within the Moody Airspace Complex, which would redistribute military aircraft training operations, effects on listed species would be limited to aircraft movement, noise, and the use of defensive countermeasures (i.e., chaff and flares). Therefore, the proposal will have no effect on the 15 listed plants, fish, or invertebrates that will not be exposed to these activities. In addition, the proposal will have no effect on five species that are not likely to be present and may affect but is unlikely to affect one species. The potential for each listed species to be affected by the proposal is summarized in Table 1.

Table 1. Federally Protected Species with the Potential to Occur in the Proposed Low-Altitude Military Operations Areas

Common Name	Scientific Name	Legal Status	Potential to be Affected
	Birds		
Eastern black rail	Laterallus jamaicensis spp. jamaicensis	Proposed Threatened	Yes
Red-cockaded woodpecker	Picoides borealis	Endangered	Yes
Wood stork	Mycteria americana	Threatened	Yes

Common Name	Scientific Name	Legal Status	Potential to be Affected
	Amphibians		
Frosted flatwoods salamander	Ambystoma cingulatum	Threatened	Yes
Reticulated flatwoods salamander	Ambystoma bishop	Endangered	No
	Reptiles		
American alligator	Alligator mississipplensis	Threatened (S/A)	Yes
Eastern indigo snake	Drymarchon couperi	Threatened	Yes
Gopher tortoise	Gopherus polyphemus	Candidate	Yes
	Clams		
Fat threeridge (mussel)	Amblema neislerii	Endangered	No
Gulf moccasinshell	Medionidus penicillatus	Endangered	No
Oval pigtoe	Pleurobema pyriforme	Endangered	No
Purple bankclimber (mussel)	Elliptoideus sloatianus	Threatened	No
Shinyrayed pocketbook	Lampsilis subangulata	Endangered	No
Suwannee moccasinshell	Medionidus walkeri	Threatened	No
	Fish	de di	
Gulf Sturgeon	Acipenser oxyrinchus desotoi	Threatened	No
	Plants		
American chaffseed	Schwalbea americana	Endangered	No
Canby's dropwort	Oxypolis canbyi	Endangered	No
Cooley's meadowrue	Thalictrum cooleyi	Endangered	No
Harperella	Ptilimnium nodosum	Endangered	No
Pondberry	Lindera melissifolia	Endangered	No
Relict trillium	Trillium reliquum	Endangered	No

Source: USFWS 2019 S/A –similarity of appearance

Designated critical habitat for four of the clam species overlaps with the proposed lowaltitude MOAs: Gulf moccasinshell (Medionidus penicillatus), oval pigtoe (Pleurobema pyriforme), purple bankclimber (Elliptoideus sloatianus), and shinyrayed pocketbook (Lampsilis subangulata). There is proposed critical habitat for the Suwannee moccasinshell (Medionidus walkeri).

Under the Proposed Action, there would be no ground-disturbing activities, and all potential impacts on biological resources would be associated with aircraft operations and the use of defensive countermeasures in the proposed low-altitude MOAs. Further, there would be no risk of wildland fires because flare use is limited to altitudes above 2,000 feet AGL and the use of flares is suspended when conditions are conducive to wildfires. Because there would be no on-

ground or ground-disturbing activities, there would be no effect on federally listed clams, including the fat threeridge (Amblema neislerii), Gulf moccasinshell, oval pigtoe, purple bankclimber, shinyrayed pocketbook, and Suwannee moccasinshell; on fishes, including the Gulf sturgeon (Acipenser oxyrinchus desotoi); and on plants, including American chaffseed (Schwalbea americana), Canby's dropwort (Oxypolis canbyi), Cooley's meadowrue (Thalictrum cooleyi), harperella (Ptilimnium nodosum), pondberry (Lindera melissifolia), and relict trillium (Trillium reliquum). Therefore, these species are not discussed further.

Eastern Black Rail. The eastern black rail (Laterallus jamaicensis spp. jamaicensis) is federally listed as proposed threatened. It is a small, secretive marsh bird that is broadly distributed. It lives in fresh and saltwater marshes in portions of the United States, Central America, and South America. Eastern black rail habitat can range in salinity from salt to brackish to fresh water. Eastern black rails are primarily found in coastal wetlands; however, there is no suitable habitat for the eastern black rail in wetlands beneath the proposed low-altitude MOAs. Further, no observations or detections of the species occurred during surveys at Moody AFB or on the Grand Bay Range in 2018 (Watts et al. 2018).

Red-Cockaded Woodpecker. The red-cockaded woodpecker is federally listed as endangered and could potentially occur in low numbers within mature pine forest habitat with sparse understory vegetation beneath the proposed low MOAs. However, there is very little mature pine forest habitat beneath the proposed low MOAs, and most pine forest is managed for timber and is harvested before it can reach a size and age class suitable to support the red-cockaded woodpecker. The documented populations of red-cockaded woodpeckers closest to the proposed low-altitude MOAs are in the Okefenokee National Wildlife Refuge.

Wood Stork. The wood stork is a federally threatened wading bird that occurs in the southeastern United States and across the Caribbean and into South America. Wood storks are mostly white with a head and neck lacking feathers. They nest colonially in rookeries. Wood storks forage for fish, frogs, crabs, and crustaceans in shallow water. Wood storks are known to occur throughout southern Georgia, including in the Carolina bay habitats proximate to Moody AFB. A total of nine wood stork rookeries are known to occur beneath the proposed Corsair North Low and Corsair South Low MOAs. No other wood stork rookeries have been recorded beneath the other proposed low-altitude MOAs.

Frosted Flatwoods Salamander. The frosted flatwoods salamander (Ambystoma cingulatum) is a federally threatened amphibian with a grey or black body with white spots. Its distribution is limited to longleaf and slash pine flatwoods with sandy soils. Its diet primarily consists of earthworms and spiders. Since 1990, only four sites in Georgia have had documented occurrences of the flatwoods salamander. There is limited suitable habitat beneath the proposed low-altitude MOAs for the frosted flatwoods salamander, but it is assumed to be present in mature flatwoods.

Reticulated Flatwoods Salamander. The reticulated flatwoods salamander (Ambystoma bishopi) is a federally endangered amphibian that is similar in appearance to the frosted flatwoods salamander, but there are more distinct white spots on the reticulated flatwoods salamander. Its distribution is also limited to longleaf and slash pine flatwoods with sandy soils west of the Apalachicola River – Flint River systems, and it primarily feeds on earthworms and

spiders. As reticulated flatwoods salamander distribution does not overlap with the proposed low-altitude MOAs it is assumed to be absent from the project area.

American Alligator. The American alligator (Alligator mississippiensis) is federally listed as threatened due to its similarity in appearance to the American crocodile (Crocodylus acutus). The American alligator was officially removed from the list of endangered species in 1987. This classification of the alligator in the ESA allows the USFWS to regulate the harvest and legal trade in the animals, their skins, and products made from them, as part of efforts to prevent the illegal take and trafficking of endangered "look alike" reptiles. Beyond harvest and legal trade regulations, there are no other regulatory requirements for this species under the ESA, and alligators are not recognized as an endangered or threatened species and are not typically considered in Section 7 ESA consultations with the USFWS for installation activities (Moody AFB 2018). The American alligator is a common reptile found throughout south Georgia and north Florida and is known to occur beneath all of the proposed low-altitude MOAs.

Eastern Indigo Snake. The eastern indigo snake (Drymarchon corais coupert) is a federally threatened reptile and a nonvenomous snake. It can grow to a length of approximately 8 feet. The snake primarily feeds on small mammals, birds, amphibians, and reptiles, as well as the eggs of amphibians and reptiles. Indigo snakes typically deposit their eggs in gopher tortoise (Gopherus polyphemus) burrows and are associated in distribution with gopher tortoises. They occur in pine flatwoods, hardwood forests, and areas around cypress (Taxodium distichum) swamps. Eastern indigo snakes are known to occur on the Grand Bay Range at Moody AFB and are expected to occur in suitable habitats beneath all of the proposed low-altitude MOAs.

Gopher Tortoise. The gopher tortoise is federally listed as a candidate species in southern Georgia and northern Florida and is the only species of tortoise that occurs east of the Mississippi River. The gopher tortoise is typically between 9 and 11 inches long with a tan, brown, or gray shell at maturity. Gopher tortoises spend the majority of their time in burrows that average 6.5 feet in depth. They feed on low-growing plants proximate to their burrows and occur in well-drained, sandy soils suitable for digging burrows. Gopher tortoises are known to occur on the Moody AFB Main Base and Grand Bay Range and are expected to occur in suitable habitats beneath all of the proposed low-altitude MOAs.

Determination of the Effects of the Proposed Action

The gopher tortoise and indigo snake are primarily associated with gopher tortoise burrows and occur in forested habitats. They would not be exposed to aircraft movement and operations or increased sound levels; therefore the Air Force has determined that aircraft operations in the proposed low-altitude MOAs associated with the Moody AFB comprehensive airspace initiative would have no effect on the gopher tortoise or indigo snake. The frosted flatwoods salamander would also occur in forested habitats primarily associated with aquatic environments. It would not be exposed to aircraft movement or increased sound levels from training operations in the proposed low-altitude MOAs; therefore, the Air Force has determined that the Moody AFB comprehensive airspace initiative would have no effect on the frosted flatwoods salamander. Further, the reticulated flatwoods salamander's distribution does not geographically overlap with the proposed low-altitude MOAs; therefore the Air Force has determined that the Moody AFB comprehensive airspace initiative would have no effect on the

reticulated flatwoods salamander. Based on the absence of the eastern black rail and the red-cockaded woodpecker in the proposed low-altitude MOAs where the action is proposed, and the lack of suitable habitat in the action area to support these two species, the Air Force has determined that the Moody AFB comprehensive airspace initiative would have no effect on the eastern black rail and red-cockaded woodpecker.

Under all three alternatives, noise associated with aircraft operations in the proposed low-altitude MOAs would not change substantially. Under Alternative 1, where aircraft would operate at the lowest altitudes of the three alternatives evaluated, sound levels would increase from between 0.0 to 1.2 A-weighted decibels (dBA) day-night sound level (DNL) as a result of aircraft operations in the Corsair North Low, Corsair South Low, Grand Bay, Moody 2 North, Mustang Low, and Warhawk Low MOAs and would increase 2.4 dBA DNL in the Thud Low MOA. Although there is an increase in sound levels in these proposed low-altitude MOAs, the noise levels would not exceed 46.2 dBA DNL in any of the proposed low-altitude MOAs, which is well below the threshold for noise impacts on wildlife (Manci et al. 1988). No supersonic flights are proposed, and no impacts from sonic booms would occur. Therefore, noise from low-altitude aircraft operations as a result of the Moody AFB Comprehensive Airspace Initiative would not impact listed wildlife.

Effects on listed species could occur from flight operations at lower altitudes in the proposed low-altitude MOAs. These aircraft operations could affect listed species due to aircraft movement, bird/wildlife aircraft strikes, and use of defensive countermeasures at very low altitudes. For listed bird species, given the large area where training would occur, and that most low-altitude training would occur during daytime hours, the likelihood for listed birds to encounter aircraft during training operations is low. However, aircraft movement at altitudes at or below 1,000 feet over wood stork rookeries in the proposed Corsair North, Corsair South, Mustang, and Warhawk MOAs could have the potential to cause a startle effect in nesting wood storks. To minimize startle affects from aircraft movement and to reduce the risk of bird aircraft strike hazards, Moody AFB implements a 500-foot AGL exclusion zone over all known active wood stork rookeries as well as bald eagle nests. These exclusion zones would be updated annually and provided to all pilots operating at low altitudes in the Moody Airspace Complex. With the implementation of exclusion zones as well as adherence to the requirements of the Moody AFB bird/animal aircraft strike hazard management plan during all training operations, aircraft movement at low altitudes may affect but is not likely to adversely affect wood storks.

There is the potential for components of chaff and flares that remain after use to make their way to the water surface of wetlands and shallow aquatic environments where they could be ingested by wood storks. Chaff cartridges, chaff canisters, chaff components, and chaff and flare end caps and pistons would be released into the environment, where they would persist for long periods. Some species of waterbirds and seabirds are known to ingest plastic when it is mistaken for prey (Auman et al. 1997, Yamashita et al. 2011, Provencher et al. 2014). The ingestion of plastic such as chaff and flare compression pads or pistons by birds such as wood storks could cause gastrointestinal obstructions or hormonal changes leading to reproductive issues (Provencher et al. 2014). Unless consumed plastic pieces are regurgitated, the chaff and flare compression pads or pistons could cause digestive tract blockages and eventual starvation and be lethal to birds that forage in aquatic habitats such as wood storks; however, based on the available information, it is not possible to accurately estimate actual ingestion rates or responses

of individual bird species (Moser and Lee 1992); for example, it is possible that wood storks do not mistake these plastic components for prey and mistakenly consume them. Given that there would be no change in the quantity of chaff and flare used in the Moody Airspace Complex and the small number of chaff and flares that would be used over the large expanses of the proposed Corsair South Low, Mustang Low, and Warhawk Low MOAs through the redistribution of training operations, it is highly unlikely that wood storks would ever encounter chaff and flare components in aquatic environments of Carolina bays where they forage. Therefore, the use of chaff and flares in the proposed low-altitude MOAs as a result of training may affect but is not likely to adversely affect the wood stork as a result of Alternative 1.

Please note that we are also consulting with the North Florida and Georgia Ecological Services Field Offices. Therefore, I am requesting your participation in the review and comment process for those resources within your office's area of responsibility. Further, I am requesting written concurrence with our *no effect* determination on the federally listed birds: eastern black rail and red-cockaded woodpecker; reptiles: gopher tortoise and eastern indigo snake; amphibians: frosted flatwoods salamander and reticulated flatwoods salamander; clams: fat threeridge, Gulf moccasinshell, oval pigtoe, purple bankclimber, shinyrayed pocketbook, and Suwannee moccasinshell; the Gulf sturgeon; plants: American chaffseed, Canby's dropwort, Cooley's meadowrue, harperella, pondberry, and relict trillium; and our *may affect but not likely to adversely affect* determination on the federally listed wood stork. Please provide concurrence or any comments or additional information concerning the Proposed Action and alternatives within 30 days of the date of this letter to me at 23 CES/CEIE, 3485 Georgia Street, Moody AFB, Georgia 31699 or by email to gregory.lee.5@us.af.mil. Thank you in advance for your assistance in this effort.

Sincerely

GREGORY W. LEE Environment Element Chief

W. Lee

Attachments

- 1. Figure 1. Moody Airspace Complex
- Figure 2. Proposed Low-Altitude Military Operations Areas and Ecoregions beneath the Moody Airspace Complex

References

Auman, H. J., J. P. Ludwig, J. P. Giesy, and T. Colborn. 1997. Plastic Ingestion by Laysan Albatross Chicks on Sand Island, Midway Atoll, in 1994 and 1995. In G. Robinson and R. Gales (eds.), Albatross Biology and Conservation, pp. 239–244. Surrey Beatty and Sons, Chipping Norton.

Manci, K. M., D. N. Gladwin, R. Villella, and M. G Cavendish. 1988. Effects of Aircraft Noise and Sonic Booms on Domestic Animals and Wildlife: A Literature Synthesis. U.S. Fish and Wildlife Service National Ecology Research Center, Ft. Collins, Colorado. NERC-88/29. 88 pp.

Moody AFB. 2018. Integrated Natural Resources Management Plan.

Moser, M. L., and D. S. Lee. 1992. A Fourteen-Year Survey of Plastic Ingestion by Western North Atlantic Seabirds. Colonial Waterbirds 15(1):83-94.

Provencher, J., A. Bond, A. Hedd, W. Montevecchi, S. Muzaffar, S. Courchesne, H. Gilchrist, S. Jamieson, F. Merkel, K. Falk, J. Durinck, and M. Mallory. 2014. Prevalence of Marine Debris in Marine Birds from the North Atlantic. Marine Pollution Bulletin 84:411–417.

United States Fish and Wildlife Service (USFWS). 2019. Information for Planning and Consultation. https://ecos.fws.gov/ipac. Accessed December 2019.

Watts, B. D., B. J. Paxton., and F. M. Smith. 2018. Assessment of Black Rail Status in Georgia, Interim Report: Summer 2018. CCB Technical Reports. 293.

Yamashita, R., H. Takada, M. A. Fukuwaka, and Y. Watanuki. 2011. Physical and Chemical Effects of Ingested Plastic Debris on Short-Tailed Shearwaters, *Puffinus tenuirostris*, in the North Pacific Ocean. Marine Pollution Bulletin 62(12):2845–2849.

Letter from Moody AFB to the US Fish and Wildlife Service requesting concurrence under Section 7 of the Endangered Species Act (continued)

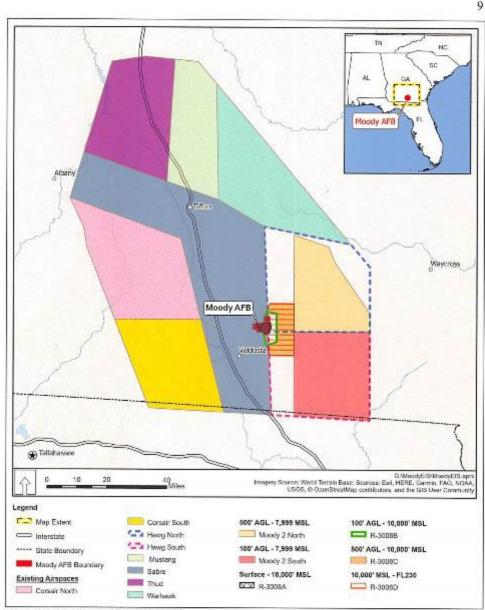


Figure 1. Moody Airspace Complex

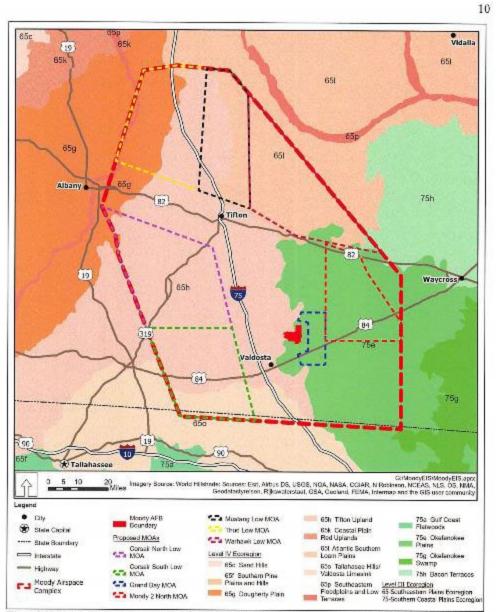


Figure 2. Proposed Low-Altitude Military Operations Areas and Ecoregions beneath the Moody Airspace Complex

USFWS Endangered Species Act Section 7 Concurrence Letter

DEPARTMENT OF THE AIR FORCE 23D CIVIL ENGINEER SQUADRON (ACC) MOODY AIR FORCE BASE GEORGIA

Mr. Gregory Lee

0 1 JUN 2020

U. S. Fish and Wildlife Service RG Stephens, Jr. Federal Building 355 E. Hancock Ave., Rm 320, Box 7 Athens, GA 30601; 706-613-9493 FWS Log No.

2020-2503

Based on information provided, we concur with your determination that the project is not likely to adversely affect federally-listed species. No further ESA Section 7 action is required, unless the project changes, a new species is listed, or new data indicate impacts per listed species may occur.

Donald W. Imm, Ph.D., Field Supervisor

Date

June 11, 2020

The United States Air Force (Air Force) requests informal Section 7 consultation under the Endangered Species Act (ESA) for the proposed Moody Air Force Base (AFB) Comprehensive Airspace Initiative (Consultation Code 04EF1000-2020-SLI-0299). Moody AFB has prepared an Environmental Impact Statement (EIS) to assess the potential environmental impacts associated with proposed additions and modifications to the Moody Airspace Complex (Figure 1), which overlies all or portions of 28 counties in south Georgia and north Florida. A total of 21 federally listed threatened or endangered species have the potential to occur in this area. The proposal will have no effect on fifteen of the listed plants, fish, or invertebrates. Further, the proposal will have no effect on five species that are not likely to be present. However, as explained below, the Air Force has determined that the proposed activity has the potential to cause a startle effect on nesting wood storks (Mycteria americana), and wood storks could be harmed by the ingestion of chaff cartridge components, even though the likelihood of this occurring is low. Therefore, the Air Force has determined that the proposal may affect, but is not likely to adversely affect, the wood stork and will have no effect on the other 20 species. We request your concurrence with these determinations.

The EIS was prepared in accordance with the National Environmental Policy Act (NEPA) of 1969, the Council on Environmental Quality regulations implementing NEPA, and the Air Force NEPA regulations. The Moody Airspace Complex consists primarily of mid- to higher-altitude special use airspace (SUA; 8,000 feet above mean sea level [MSL] up to 18,000 feet) with limited low-altitude SUA (less than 8,000 feet MSL). Aircrews of A-10C, A-29, HH-60G, and HC-130J aircraft assigned to Moody Air Force AFB, Georgia, have severely constrained access to existing low-altitude SUAs wherein they can conduct required training operations at low altitude to gain operational proficiency and meet their low-altitude close air support (CAS), personnel recovery (PR), and combat search and rescue (CSAR) mission objectives for combat readiness. As part of the proposed undertaking, the Comprehensive Airspace Initiative at Moody AFB would provide additional low-altitude Air Force-controlled SUA supporting the low-altitude training missions (CSAR, PR, CAS) for aircrews stationed at Moody AFB, which are currently limited to the Moody Airspace Complex's few existing, congested low-altitude SUAs.

Global Power for America

Endangered Species Act Section 7 Conference Letter to Georgia Ecological Services Field Office

DEPARTMENT OF THE AIR FORCE 23D CIVIL ENGINEER SQUADRON (ACC) MOODY AIR FORCE BASE GEORGIA

Mr. Gregory Lee 23 CES/CEIE 3485 Georgia Street Moody AFB GA 31699

7 February 2023

Mr. Peter Maholland, Field Supervisor US Fish and Wildlife Service Georgia Ecological Services Field Office RG Stephens, Jr. Federal Building 355 East Hancock Avenue, Room 320 Athens, Georgia 30601

Dear Mr. Maholland:

The Department of the Air Force (DAF) has prepared an Environmental Impact Statement to assess the potential environmental impacts associated with proposed additions and modifications to the Moody Air Force Base (AFB) Airspace Complex (Figure 1), which overlies all or portions of 28 counties in south Georgia and north Florida. The DAF initiated informal Section 7 consultation under the Endangered Species Act (ESA) on 1 June 2020 (Consultation Code 04EF1000-2020-SLI-0299). The DAF determined that the airspace modification proposal may affect, but is not likely to adversely affect, the federally threatened wood stork (Mycteria americana) and would have no effect on the other 20 listed species with the potential to occur in the Moody Airspace Complex. We received concurrence on these determinations from your office on 11 June 2020 (FWS Log No. 2020-2503). Since that time, the United States (US) Fish and Wildlife Service (USFWS) has determined that the tricolored bat (Perimyotis subflavus) and monarch butterfly (Danaus plexippus) warrant listing under the ESA. As such, the DAF is conferencing with the USFWS on the effects of aircraft operations at the Moody AFB airfield, aircraft training operations, and the airspace modification proposal on these two species. The DAF has determined that the ongoing operations and airspace modification proposal may affect, and is likely to adversely affect, the tricolored bat and monarch butterfly. We request your concurrence with these determinations.

The Moody Airspace Complex consists primarily of mid- to higher-altitude special use airspace (SUA; 8,000 feet above mean sea level [MSL] up to 18,000 feet) with limited low-altitude SUA (less than 8,000 feet MSL). Aircrews of A-10C, A-29, HH-60G, and HC-130J aircraft assigned to Moody AFB, Georgia, have severely constrained access to existing low-altitude SUAs wherein they can conduct required training operations at low altitude to gain operational proficiency and meet their low-altitude close air support (CAS), personnel recovery (PR), and combat search and rescue (CSAR) mission objectives for combat readiness. As part of the proposed undertaking, the Comprehensive Airspace Initiative at Moody AFB would provide additional low-altitude Air Force-controlled SUA supporting the low-altitude training missions

Global Power for America

(CSAR, PR, CAS) for aircrews stationed at Moody AFB, which are currently limited to the Moody Airspace Complex's few existing, congested low-altitude SUAs.

The Air Force has preliminarily identified four action alternatives to expand low-altitude training airspace at Moody AFB (Figures 2 and 3). All four alternatives would create new low-altitude Military Operations Areas (MOAs) beneath and within the lateral confines of existing MOAs and Restricted Areas of the Moody Airspace Complex. The four action alternatives are:

- Create new low-altitude MOAs with a floor of 1,000 feet above ground level (AGL) (Alternative 1);
- Create new low-altitude MOAs with a floor of 1,000 feet AGL with modified lateral boundaries (Modified Alternative 1);
- Create new low-altitude MOAs with a floor of 2,000 feet AGL (Alternative 2); and
- Create new low-altitude MOAs with a floor of 4,000 feet AGL (Alternative 3).

Modified Alternative 1 is the DAF's Preferred Alternative (Figure 3). Modified Alternative 1 would create the Corsair North Low, Corsair South Low, Mustang Low, and Warhawk Low MOAs with a floor of 1,000 feet AGL and a ceiling up to, but not including, 8,000 feet MSL beneath the existing Corsair North, Corsair South, Mustang Low, and Warhawk Low MOAs, respectively. The Warhawk Low and Mustang Low MOAs would always be activated concurrently during training operations. This alternative would also create the Grand Bay MOA with a floor of 100 feet AGL, and a ceiling up to but not including 500 feet AGL beneath and within the lateral confines of the existing Restricted Area R 3008C, and would lower the floor of Moody 2 North MOA from 500 feet AGL to 100 feet AGL. Training within the lowaltitude MOAs would include the use of chaff and flares, with flare use being limited to altitudes above 2,000 feet AGL. Urban CAS, helicopter landing zones, drop zones, and the use of training ordnance at the Grand Bay Range would continue unchanged under all four alternatives. There would be no change in the number of sorties at Moody AFB airfield, nor would there be any change in the number of aircraft operations in the Moody Airspace Complex under any of the four alternatives. Instead, some low-altitude training operations in the Moody Airspace Complex would be redistributed from existing low-altitude SUAs to the proposed low-altitude MOAs. Further, no ground-disturbing or vegetation removal activities are associated with any of the four alternatives. All potential impacts on biological resources would be associated with redistributed aircraft operations and the use of defensive countermeasures in the proposed low-altitude MOAs. Further, there would be no risk of wildland fires because flare use is limited to altitudes above 2,000 feet AGL, and the use of flares is suspended when conditions are conducive to wildfires.

Tricolored Bat (Perimyotis subflavus)

The tricolored bat is wide ranging across the eastern and central US as well as areas of southern Canada. In winter this species roosts in mines and caves across its range, although in the southern US, where caves are sparse, it will roost in road-associated culverts (USFWS 2022a). This species is a common resident of Georgia and has been detected on Moody AFB (Lowndes County) as well as several counties proximate to Moody AFB and within the Moody Airspace Complex, including Clinch, Cook, and Tift counties (Ferrall 2019). Further, two tricolored bats were detected during bat surveys conducted in 2001 on Moody AFB (Moody AFB 2001), and four tricolored bat strikes by aircraft were recorded by the Moody AFB Safety Office in 2022 at Moody AFB and within the Moody Airspace Complex.

On 13 September 2022, the USFWS announced a proposal to list the tricolored bat as endangered under the ESA. This species faces extinction due to white-nose syndrome, a deadly disease that affects cave-dwelling bats (USFWS 2022a).

The tricolored bat is one of the smallest bats known to occur in the US. During the spring, summer, and fall they can be found roosting in live and dead leaf clusters of deciduous trees. In the southern US they are known to roost in Spanish moss (*Tillandsia usneoides*) and *Usnea trichodea* lichen (USFWS 2022a). They have also been observed using human-made structures such as barns, concrete bunkers, and bridges. Tricolored bats prefer open forests with large trees and woodland edges (Ferrall 2019).

Tricolored bats are rarely found in large groups. Males and females will hibernate together but are typically found roosting individually. Reproductive females have been known to form groups upwards of 50 individuals during spring, summer, and fall (Ferrall 2019). Tricolored bats are insectivores, emerging in the early evening to forage. They prefer to forage at, or above, treetop level, but they may forage closer to ground level later in the evening. They forage most commonly over waterways and at forest edges (USFWS 2022a).

Monarch Butterfly (Danaus plexippus)

Monarch butterflies are native to North and South America and can be found across a wide range of habitats. This species is found in Georgia and likely occurs on a regular basis on Moody AFB and within the Moody Airspace Complex.

Currently, the monarch butterfly is a candidate for listing under the ESA (USFWS 2022b). It currently has no protection within the state of Georgia (Meyers 2020). Monarch populations at overwintering sites have consistently declined for more than 20 years, and changes in breeding, migratory, and overwinter habitats from habitat conversion, urban development, and use of herbicides and insecticides are threats to monarch populations (USFWS 2022b).

Monarch butterflies undergo complete metamorphosis going through the four stages of egg, larva, pupa, and adult. They rely on healthy and abundant milkweed (*Asclepias* spp.) plants for egg laying and as a food source for their larvae and caterpillars (USFWS 2022b). Adults are generalists and will forage on a wide range of blooming plants. Nectar from blooming plants is an important food source for adults throughout the breeding season, migration, and overwintering. Most monarch butterflies are migratory, but some populations, known as resident, breed year-round and do not migrate. Resident populations of monarch butterflies have been documented in southern Florida and other parts of the Gulf Coast. However, monarch butterflies that likely occur within the Moody Airspace Complex follow a multigenerational eastern migratory pathway and overwinter in central Mexico (Meyers 2020).

Determination of the Effects of the Proposed Action

Under all four alternatives, noise associated with aircraft operations in the proposed low-altitude MOAs would not change substantially. Under Alternative 1 and Modified Alternative 1, where aircraft would operate at the lowest altitudes of the four alternatives evaluated, sound levels would increase from between 0.0 and 3.3 A-weighted decibels (dBA) Day-Night Average Sound Level (DNL) in the proposed low-altitude MOAs. Although there is an increase in sound

E-64

Appendix E

levels in these proposed low-altitude MOAs, the noise levels would not exceed 51.0 dBA DNL in any of the proposed low-altitude MOAs. A DNL of 51.0 dBA is below the threshold for noise impacts on wildlife (Manci et al. 1988). No supersonic flights are proposed, and no impacts from sonic booms would occur. Therefore, noise from low-altitude aircraft operations as a result of the Moody AFB Comprehensive Airspace Initiative would not impact the tricolored bat or monarch butterfly.

Effects on the tricolored bat and monarch butterfly could occur from flight operations at lower altitudes in the proposed low-altitude MOAs. These aircraft operations could affect the tricolored bat and monarch butterfly due to aircraft movement, bird/wildlife aircraft strikes, and use of defensive countermeasures at very low altitudes.

For the tricolored bat, given the large area where training would occur, and that there would be no change in the number of low-altitude operations or the timing of aircraft operations in the Moody Airspace Complex, and that most low-altitude training would occur during daytime hours and the tricolored bat is crepuscular/nocturnal, the likelihood for the tricolored bat to encounter aircraft more frequently than under existing conditions during training operations is very low.

For the monarch butterfly, soaring flight during annual migration patterns occurs during favorable wind conditions, and soaring altitudes can exceed 1,000 feet AGL (Gibo and Pallett 1979, Schmidt-Koenig 1985). Annual migration patterns for the eastern monarch population include south Georgia and north Florida in the Moody Airspace Complex. Aircraft operations at altitudes at or below 1,000 feet in the proposed low-altitude MOAs could strike migrating monarchs during soaring flight. However, there would be no increase in low-altitude aircraft operations under the preferred alternative, as a portion of the current low-altitude aircraft operations would be redistributed from existing low-altitude MOAs to proposed low-altitude MOAs. Therefore, there would be only a slight increase in the likelihood of aircraft strikes to migrating monarchs in the Moody Airspace Complex as the existing low-altitude aircraft operations would occur over a broader geographic area within the monarch's migratory pathway.

Moody AFB implements a bird/animal aircraft strike hazard management plan to minimize and quantify strike hazards. With the continued adherence to the requirements of the Moody AFB bird/animal aircraft strike hazard management plan during all training operations in the proposed low-altitude MOAs, aircraft movement at low altitudes in the proposed low-altitude MOAs may affect, but is not likely to adversely affect, the tricolored bat and monarch butterfly.

There is the potential for components of chaff and flares that remain after use to make their way to the water surface of wetlands and shallow aquatic environments. However, tricolored bats are insectivorous and feed on insects aerially and monarch butterflies feed on nectar; therefore, there would be no risk of ingestion of plastic such as chaff and flare compression pads or pistons by tricolored bats or monarch butterflies. Therefore, the use of chaff and flares in the proposed low-altitude MOAs as a result of training would have no effect on these species.

I am requesting written concurrence with our may affect and is likely to adversely affect determination from Moody AFB aircraft operations on the proposed endangered tricolored bat and candidate monarch butterfly. Please provide concurrence on the ESA Section 7 conference or any comments or additional information concerning the Proposed Action and alternatives within 30 days of the date of this letter to me at 23 CES/CEIE, 3485 Georgia Street, Moody

AFB, Georgia 31699 or by email to gregory.lee.5@us.af.mil. Thank you in advance for your assistance in this effort.

Sincerely

LEE.GREGORY Digitally signed by
LEE.GREGORY W. 1229925659
Date: 2023 02 07 14 20 53 -0500'

GREGORY W. LEE
Installation Management Flight Chief

Attachments

- 1. Figure 1. Moody Airspace Complex
- 2. Figure 2. Proposed Alternatives 1, 2, and 3 for Low-Altitude Military Operations Areas in the Moody Airspace Complex
- Figure 3. Proposed Modified Alternative 1 (Preferred Alternative) for Low-Altitude Military Operations Areas in the Moody Airspace Complex

References

Ferrall, E. 2019. Species Profile for *Perimyotis subflavus*. Georgia Biodiversity Portal, Wildlife Resources Division, Wildlife Conservation Section, Social Circle. https://georgiabiodiversity.org/natels/profile?es_id=17822. June.

Gibo, D.L., and M.J. Pallett. 1979. Soaring Flight of Monarch Butterflies Danaus plexippus (Lepidoptera: Danaidae), during the Late Summer Migration in Southern Ontario. Canadian Journal of Zoology. 57:1393-1401.

Manci, K.M., D.N. Gladwin, R. Villella, and M.G. Cavendish. 1988. Effects of Aircraft Noise and Sonic Booms on Domestic Animals and Wildlife: A Literature Synthesis. US Fish and Wildlife Service National Ecology Research Center, Fort Collins, Colorado. NERC-88/29. 88pp.

Meyers, S. 2020. Species Profile for *Danaus plexippus*. Georgia Biodiversity Portal, Wildlife Resources Division, Wildlife Conservation Section, Social Circle. https://georgiabiodiversity.org/natels/profile?es id=16347>. December.

Moody Air Force Base (AFB). 2001. Survey for Bats on Moody Air Force Base, Lowndes and Lanier Counties, Georgia. Prepared for Environmental Resources Section, US Army Engineer District, Kansas City. Prepared by BHE Environmental Inc. February.

Schmidt-Koenig, K. 1985. "Migration Strategies of Monarch Butterflies (Danaus plexippus (L.); Danaidae; Lepidoptera)." In: M.A. Rankin (Ed.). Migration: Mechanisms and Adaptive Significance. University of Texas Contributions to Marine Science 27 (Supplement), pp 786-798.

United States Fish and Wildlife Service (USFWS). 2022a. Tricolored Bat. https://fws.gov/species/tricolored-bat-perimyotis-subflavus. Accessed November 2022.

United States Fish and Wildlife Service (USFWS). 2022b. Monarch. https://fws.gov/species/monarch-danaus-plexippus. Accessed November 2022.

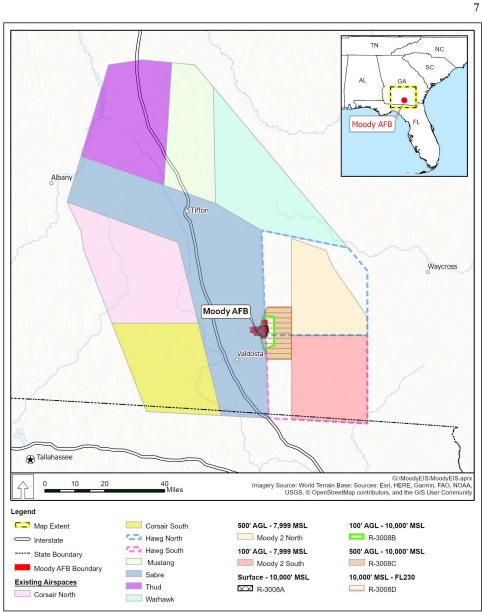


Figure 1. Moody Airspace Complex

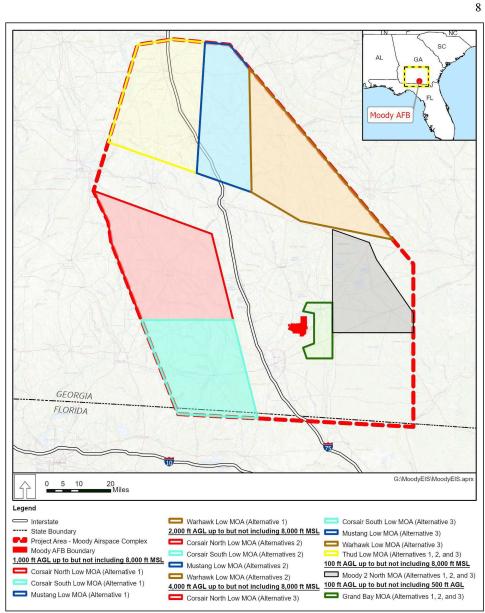


Figure 2. Proposed Alternatives 1, 2, and 3 for Low-Altitude Military Operations Areas in the Moody Airspace Complex

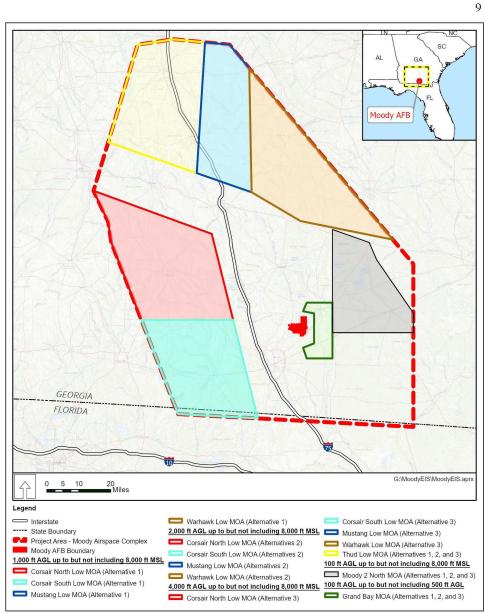


Figure 3. Proposed Modified Alternative 1 (Preferred Alternative) for Low-Altitude Military Operations Areas in the Moody Airspace Complex

USFWS Endangered Species Act Section 7 Conference Letter Response

United States Department of the Interior

Fish and Wildlife Service

RG Stephens, Jr. Federal Building 355 East Hancock Avenue, Room 320 Athens, Georgia 30601 February 24, 2023

West Georgia Sub Office P.O. Box 52560 Ft. Benning, Georgia 31995-2560 Coastal Sub Office 4980 Wildlife Drive Townsend, Georgia 31331

Gregory W. Lee, Flight Chief Installation Management Moody Air Force Base, GA

Re: FWS Log No. 2023-0048844

Dear Mr. Lee:

The U.S. Fish and Wildlife Service (Service) has received your February 22, 2023, letter concerning to an environmental impact statement prepared by the Department of the Air Force to assess the potential environmental impacts associated with proposed additions and modifications to the Moody Air Force Airspace Complex. The Department of the Air Force (DAF) initiated informal Section 7 consultation under the Endangered Species Act (ESA) on 1 June 2020. The DAF determined that the airspace modification proposal may affect, but is not likely to adversely affect, the federally threatened wood stork (Mycteria americana) and would have no effect on the other 20 listed species with the potential to occur in the Moody Airspace Complex. We received concurrence on these determinations from your office on 11 June 2020. Since that time, the Service has determined that the tricolored bat (Perimyotis subflavus) and monarch butterfly (Danaus plexippus) warrant listing under the Endangered Species Act. The tricolored bat is being proposed as endangered with listing scheduled for mid-September of 2023. The monarch butterfly is an official candidate for listing with no official date for listing currently. As such, the DAF is conferencing with the USFWS on the effects of aircraft operations at the Moody AFB airfield, aircraft training operations, and the airspace modification proposal on these two species. We submit the following comments on this project under provisions of the Endangered Species Act of 1973 as amended (16 U.S.C. 1531 et seq.).

This tricolored bat is a common resident of Georgia and has been detected on Moody Air Force Base (AFB) (Lowndes County) as well as several counties proximate to Moody AFB and within the Moody Airspace Complex, including Clinch, Cook, and Tift counties. Further, two tricolored bats were detected during bat surveys conducted in 2001 on Moody AFB, and four tricolored bat strikes by aircraft were recorded by the Moody AFB Safety Office in 2022 at Moody AFB and within the Moody Airspace Complex. Monarch butterflies are native to North and South America and can be found across a wide range of habitats. This species is found in Georgia and likely occurs on a regular basis on Moody AFB and within the Moody Airspace Complex. Most monarch butterflies are migratory, but some populations, known as resident, breed year-round and do not migrate. Resident populations of monarch butterflies have been documented in southern Florida and other parts of the Gulf Coast. However, monarch butterflies that likely occur within the Moody Airspace Complex follow a multigenerational eastern migratory pathway and overwinter in central Mexico (Meyers 2020). Effects on the tricolored bat and

February 24, 2023

monarch butterfly could occur from flight operations at lower altitudes in the proposed low-altitude Military Operation Areas (MOAs). These aircraft operations could impact the tricolored bat and monarch butterfly due to aircraft movement, bird/wildlife aircraft strikes, and use of defensive countermeasures at very low altitudes. Moody AFB implements a bird/animal aircraft strike hazard management plan to minimize and quantify strike hazards. With the continued adherence to the requirements of the Moody AFB bird/animal aircraft strike hazard management plan during all training operations in the proposed low-altitude MOAs, aircraft movement at low altitudes in the proposed low-altitude MOAs is not likely to jeopardize the tricolored bat and monarch butterfly. Noise and the potential for components of chaff and flares that remain after use to make their way to the water surface of wetlands and shallow aquatic environments from low-altitude aircraft operations as a result of the Moody AFB Comprehensive Airspace Initiative would not impact the tricolored bat or monarch butterfly.

Species proposed for listing are not afforded protection under the Act; however, as soon as a listing becomes effective (typically 30 days after publication of the final rule in the Federal Register), the prohibitions against jeopardizing its continued existence and "take" will apply. Therefore, if your future or existing project has the potential to adversely affect tricolored bats or the monarch butterfly after the potential new listing goes into effect, we recommend that the effects of the project on these species and their habitat be analyzed to determine whether authorization under ESA section 7 is necessary. Projects with an existing section 7 biological opinion may require re-initiation of consultation to provide uninterrupted authorization for covered activities. Based on the information provided, we concur with your determination of "not likely to jeopardize" the continued existence of the tricolored bat and monarch butterfly. We understand you plan to re-consult with the Service once these species have been officially listed under the Act. In view of this, we believe that the requirements of section 7 of the Act have been satisfied at this time. However, obligations under section 7 of the ESA must be reconsidered if (1) new information reveals impacts of this identified action that may affect listed species or critical habitat in a manner not previously considered, (2) this action is subsequently modified in a manner which was not considered in this assessment, or (3) a new species is listed or critical habitat is determined that may be affected by the identified action.

Thank you for the opportunity to provide comments on the proposed project. If you require additional assistance, please contact Sandy Abbott at our West Georgia Sub Office at or at \$\frac{1}{2} \text{ or at \$\text{ or at \$

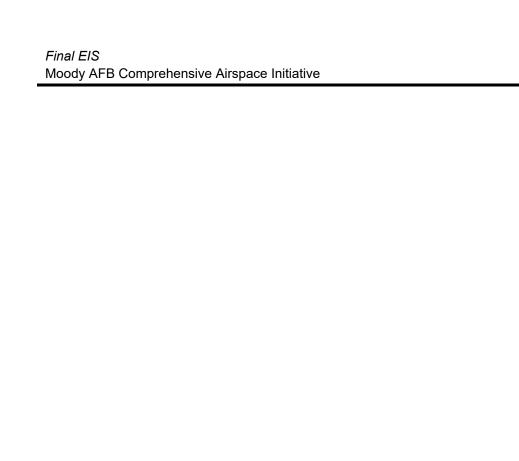
Sincerely,

JOHN Digitally signed by DORESKY Date: 2023.02.24

(for) Peter Maholland Field Supervisor

Meyers, S. 2020. Species Profile for *Danaus plexippus*. Georgia Biodiversity Portal, Wildlife Resources Division, Wildlife Conservation Section, Social Circle. https://georgiabiodiversity.org/natels/profile?es id=16347>. December.

APPENDIX F. NHPA CONSULTATION CORRESPONDENCE


FORMAT PAGE

April 2023

F-1. Tribal Coordination Letters

FORMAT PAGE

F-1.1. Moody AFB EIS Scoping Tribal Contact List

April 2023

FORMAT PAGE

Title	Point of Contact
Alabama-Coushatta Tribe of Texas	
Principal Chief	Mr. Herbert Johnson
Tribal Historic Preservation Officer (THPO)	Mr. Bryant Sylestine
Alabama-Quassarte Tribal Town	
Town King	Mr. Tarpie Yargee
THPO	Ms. Samantha Robison
Caddo Nation	
Chairwoman	Ms. Brenda Shemayme Edwards
Acting THPO	Ms. Tamara Francis-Fourkiller
Choctaw Nation of Oklahoma	
Chief	Mr. Gary Batton
THPO	Mr. Ian Thompson
Coushatta Tribe of Louisiana	
Chairman	Mr. Lovelin Poncho
Chairman	Mr. David Sickey
THPO	Ms. Linda Langley
Kialegee Tribal Town	
Chief	Mr. Jeremiah Hobia
Cultural Preservation Officer	Mr. David Cook
Mississippi Band of Choctaw Indians	
Chief	Ms. Phyliss Anderson
THPO	Not Applicable
Muscogee (Creek) Nation	
Principal Chief	Mr. James Floyd
THPO	Ms. Raelynn Butler
Historic Preservation Officer	Mr. David Butler
Muscogee Nation of Florida	
Chairwoman	Ms. Ann Denson Tucker
THPO	Not Applicable
Poarch Band of Creeks	
Tribal Chairman	Ms. Stephanie Bryan

Title	Point of Contact
THPO	Ms. Carolyn White
Seminole Nation of Oklahoma	
Principal Chief	Mr. Leonard Harjo
THPO	Mr. Theodore Isham
Seminole Tribe of Florida	
Chairman	Mr. Marcellus W. Osceola, Jr.
THPO	Dr. Paul Blackhouse or Mr. Bradley Mueller
The Cherokee Nation	
Principal Chief	Mr. Bill John Baker
THPO	Ms. Shiela Bird
Thlopthlocco Tribal Town	
Town King (Mekko)	Mr. Ryan Morrow
THPO	Mr. Terry Clouthier
United Keetoowah Band of Cherokee In	ndians
Chief	Mr. George Wickliffe
THPO	Ms. Eric Oosahwee-Voss

April 2023

F-1.2. Example Tribal Letter

FORMAT PAGE

DEPARTMENT OF THE AIR FORCE HEADQUARTERS 23D WING (ACC) MOODY AIR FORCE BASE, GEORGIA

23 WG/CC

23 Flying Tiger Way Bldg 105 Suite 1 Moody AFB, GA 31699

Chief Jeremiah Hobia Kialegee Tribal Town PO Box 332 Wetumka, OK 74883

Dear Chief Hobia:

The US Air Force (Air Force) is preparing an Environmental Impact Statement (EIS) in accordance with the National Environmental Policy Act (NEPA) to assess the potential environmental consequences associated with modifying existing and creating new special use airspace (SUA) in the Moody Airspace Complex. Per Section 306108 of the National Historic Preservation Act (NHPA) of 1966, as amended, and Title 36 Code of Federal Regulations Part 800, *Protection of Historic Properties*, the Air Force is engaging early with tribal governments as it formulates the undertaking.

Located above 28 counties in south Georgia and north Florida, the Moody Airspace Complex (Figure 1) consists primarily of mid- to higher-altitude SUA (8,000 feet above mean sea level [MSL] up to 18,000 feet) with limited low-altitude SUA (less than 8,000 feet MSL). A-10C, A-29, HH-60G, and HC-130J aircrews assigned to Moody Air Force Base (AFB), Georgia, have severely constrained access to existing low-altitude SUAs wherein they can conduct required training operations at low altitude to gain operational proficiency and meet their low-altitude close air support (CAS), personnel recovery (PR), and combat search and rescue (CSAR) mission objectives for combat readiness. As part of the proposed undertaking, the Comprehensive Airspace Initiative at Moody AFB would provide additional low-altitude Air Force-controlled SUA supporting the low-altitude training missions (CSAR, PR, CAS) for aircrews stationed at Moody AFB, which are currently limited to the Moody Airspace Complex's few existing, congested low-altitude SUAs. The Area of Potential Effect (APE) for this undertaking is therefore defined as the lateral boundaries of the proposed new SUAs within the Moody Airspace Complex (Figure 2).

The Air Force has preliminarily identified three action alternatives to expand low-altitude training airspace at Moody AFB. All three alternatives would create new low-altitude Military Operations Areas (MOAs) beneath and within the lateral confines of existing MOAs and Restricted Areas of the Moody Airspace Complex. The three action alternatives are:

- Create new low MOAs with a floor of 1,000 feet above ground level (AGL) (Alternative 1);
- Create new low MOAs with a floor of 2,000 feet AGL (Alternative 2); and
- Create new low MOAs with a floor of 4,000 feet AGL (Alternative 3).

A No Action Alternative will also be analyzed in the EIS, whereby aircrews at Moody AFB would continue to utilize the existing SUA as it is currently configured. Under the No Action Alternative, the current airspace constraints would continue and would not provide for realistic training within SUAs associated with Moody AFB. However, the No Action Alternative is required to be evaluated as a baseline under NEPA and its implementing regulations.

While the alternatives are independent of each other, the decision maker may choose to implement one alternative, a combination of low-altitude MOAs from among the three alternatives, or none of the alternatives based on the analysis provided in the EIS. Training within the low MOAs would include the use of chaff and flares, with flare use being limited to altitudes above 2,000 feet AGL. Urban CAS, helicopter landing zones, drop zones, and the use of training ordnance at the Grand Bay Range would continue unchanged under all three alternatives. There would be neither a change in the number of sorties at Moody AFB airfield nor would there be any change in the number of aircraft operations in the Moody Airspace Complex under any of the three alternatives. Further, no ground-disturbing activities are associated with any of the three alternatives. Additional information can be found on the project website at www.moodyafbairspaceeis.com.

The Air Force invites you to attend the public scoping meeting listed below. The public scoping meeting will be held in an open house format providing additional information about the Proposed Action and inviting comments on the Air Force's proposal.

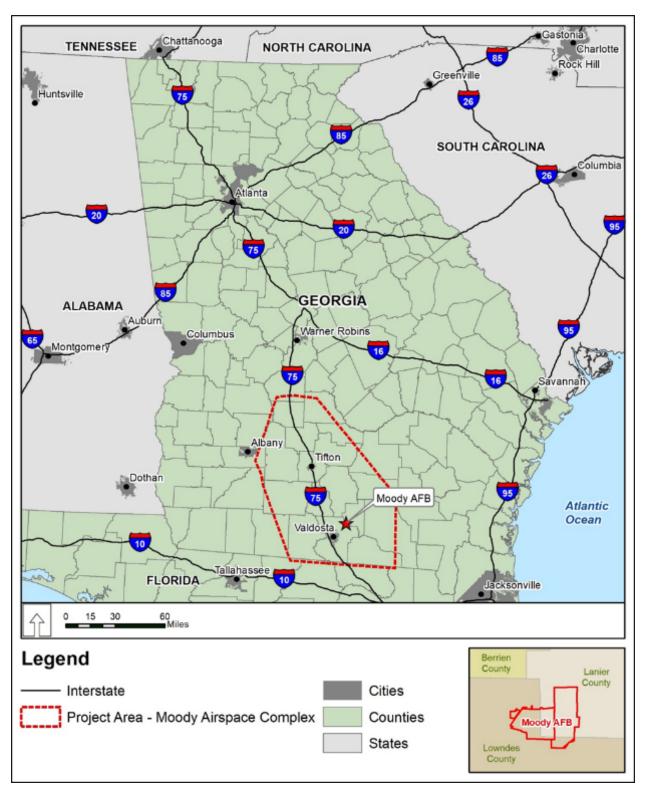
Tifton Campus Conference Center

December 5, 2019 5:00 p.m. to 8:00 p.m. (local time) University of Georgia-Tifton

> 15 R D C Road Tifton, Georgia 31794

The NHPA requires that federal agencies consult with tribes when an agency action might affect historic properties of religious and cultural significance to the tribes. In order to help us fulfill that obligation, I ask for your assistance in identifying any such properties under the Moody Airspace Complex within the project's APE that are of significance to the «Tribe». Historic properties include archeological sites, burial grounds, sacred landscapes or features, ceremonial areas, traditional cultural properties and landscapes, plant and animal communities, and buildings and structures with significant tribal association. Moody AFB does not know of any historic properties of religious and cultural significance to the «Tribe» within the APE. Nevertheless, we ask for your assistance identifying any historic properties of which we may be unaware, particularly those which may be affected by the proposed undertaking described above.

Please indicate below whether you will be provided information or would like to consult on this undertaking. Your choice applies only to providing information and consultations under the NHPA. It will not affect the handling or disposition of human remains, funerary objects, sacred objects, or objects of cultural patrimony under the Native American Graves Protection and Repatriation Act. In the event such items are discovered, we will contact you regarding their handling and disposition.


If you have any questions, please contact Mr. Busker at (229) 257-2396 or via email to lorence.busker@us.af.mil. Thank you in advance for your assistance in this effort.

Sincerely

BENJAMIN D. CONDE, Colonel, USAF Installation Tribal Cjaison Officer (ITLO)

Attachments

- 1. Figure 1 Moody Airspace Complex
- 2. Figure 2 Area of Potential Effects

F-11

Figure 1. Moody Airspace Complex

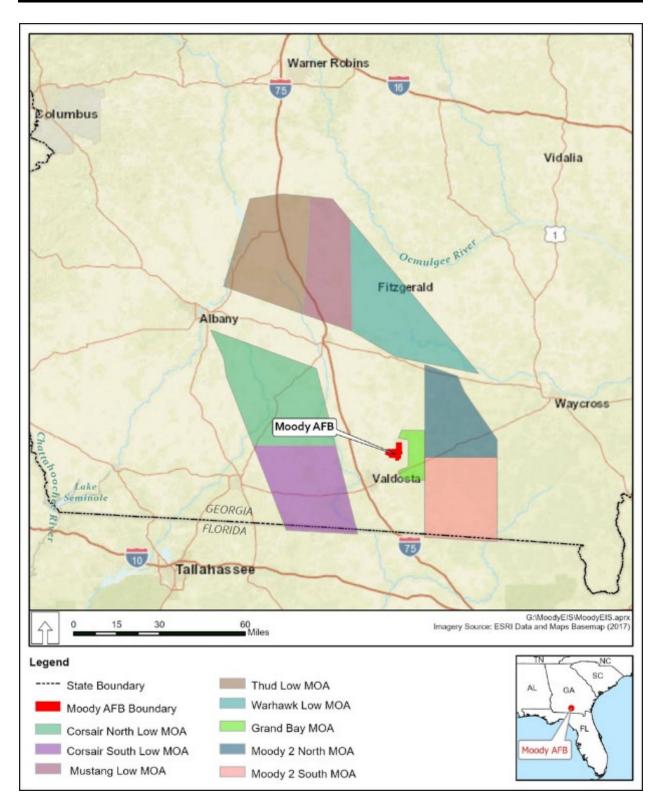


Figure 1. Area of Potential Effects

Appendix F F-12

April 2023

F-2. Tribal Coordination Responses

FORMAT PAGE

Cherokee Nation, Tribal Historic Preservation Officer

From: Elizabeth Toombs

Sent: Friday, December 6, 2019 3:50 PM

To: BUSKER, LORENCE T GS-12 USAF ACC 23 CES/CEIEA **Subject:** [Non-DoD Source] Moody Air Force Base

Dear Lorence Busker:

The Cherokee Nation recently received a review request about creating new special use airspace in the Moody Airspace Complex. When you have the opportunity, could you provide the Georgia counties that fall within the proposed Area of Potential Effects (APE)? This information will help this Office map the proposed project with our database.

Also, as a housekeeping note, our current Principal Chief is Chuck Hoskin, Jr.

Thank you for your time, details, and understanding. Please let me know if there are any questions or concerns.

Wado,

Elizabeth Toombs, Tribal Historic Preservation Officer Cherokee Nation Tribal Historic Preservation Office PO Box 948 Tahlequah, OK 74465-0948

From: BUSKER, LORENCE T GS-12 USAF ACC 23 CES/CEIEA

Sent: Tuesday, December 10, 2019 1:13 PM

To: Elizabeth Toombs

Cc: SWICK, NOLAN T GS-13 USAF AFMC AFCEC/CZN; LEE, GREGORY W GS-13 USAF ACC 23 CES/CEIE; Eric Webb

Subject: RE: Moody Air Force Base

Dear Elizabeth Toombs,

Thank you for the interest in the Moody air space project. Please find attached a brochure as well as a figure which shows the lateral extent of the proposed air space over Georgia and parts of Florida. The brochure briefly explains the proposed action. It should be noted that the lateral extent is unchanged from what is currently approved. The proposal would create new air space, usable for military training, below the existing airspace. Please feel free to call or write with any further questions. I would appreciate any written comments you have so that they can be addressed in the Environmental Impact Statement which will be prepared for this project.

I appreciate your clarification on who currently holds the Principal Chief position. I will correct our records and address future correspondence to the correct person. On that same topic, is Sheila Bird the current Tribal Historic Preservation Officer or are you now the one who that correspondence should be addressed to? We try to keep our records up to date but do not always succeed.

Thank you

Choctaw Nation of Oklahoma, Historic Preservation Department, Compliance Review Officer

From: Madison D. Currie

Sent: Wednesday, December 18, 2019 4:26 PM

To: BUSKER, LORENCE T GS-12 USAF ACC 23 CES/CEIEA

Cc: Lindsey Bilyeu

Subject: [Non-DoD Source] Moody Airspace Complex Section 106

Halito Mr. Busker,

The Choctaw Nation of Oklahoma thanks you for the correspondence regarding the above referenced project. Georgia and these parts of Florida are outside our area of historic interest. The Choctaw Nation Historic Preservation Department respectfully defers to the other Tribes that have been contacted.

If you have any questions, please contact me.

Yakoke,

Maddie Danielle Currie Compliance Review Officer Historic Preservation Department Choctaw Nation of Oklahoma P.O. Box 1210 Durant, OK 74702 580-924-8280 ext. 2727

Seminole Tribe of Florida, Tribal Historic Preservation Office

From: Bradley Mueller

Sent: Monday, December 23, 2019 1:37 PM

To: BUSKER, LORENCE T GS-12 USAF ACC 23 CES/CEIEA <lorence.busker@us.af.mil> **Subject:** [Non-DoD Source] New Special Use Airspace (SUA) in the Moody Airspace Complex,

NHPA Section 106 Consultation

SEMINOLE TRIBE OF FLORIDA TRIBAL HISTORIC PRESERVATION OFFICE AH-TAH-THI-KI MUSEUM

TRIBAL HISTORIC PRESERVATION OFFICE

SEMINOLE TRIBE OF FLORIDA AH-TAH-THI-KI MUSEUM

30290 JOSIE BILLIE HIGHWAY PMB 1004 CLEWISTON, FL 33440

THPO PHONE: (863) 983-6549 MUSEUM PHONE: (863) 902-1113 FAX: (863) 902-1117

THPO WEBSITE: WWW.STOFTHPO.COM MUSEUM WEBSITE: WWW.AHTAHTHIKI.COM

TRIBAL OFFICERS

MARCELLUS W. OSCEOLA JR.

CHAIRMAN
MITCHELL CYPRESS

VICE CHAIRMAN

LAVONNE ROSE SECRETARY

PETER A. HAHN TREASURER

December 23, 2019

Colonel Benjamin D. Conde, USAF

Installation Tribal Liaison Officer

23 Flying Tiger Way

Bldg 105, Suite 1

Moody Air Force Base, Georgia 31699

Subject: New Special Use Airspace (SUA) in the Moody Airspace Complex, NHPA Section 106 Consultation, Georgia

Appendix F

THPO Compliance Project Tracking Number: 0032030

Dear Colonel Conde,

Thank you for contacting the Seminole Tribe of Florida – Tribal Historic Preservation Office (STOF-THPO), Compliance Section regarding the New Special Use Airspace (SUA) in the Moody Airspace Complex project. The proposed undertaking does fall within the STOF Area of Interest. We have reviewed the documents you provided and are not currently aware of any historic properties of religious or cultural significance to the STOF within the boundaries of the Area of Potential Effect (APE) that might be impacted by any of the undertaking alternatives you specified. We respectfully suggest, however, that you consider possible auditory impacts to historic properties that may extend beyond the boundaries of your current APE if you have not already done so. The Tribe appreciates your reaching out to it on a government-to-government basis pursuant to Section 106 of the National Historic Preservation Act and other applicable federal responsibilities. Please feel free to contact us with any questions or concerns.

Respectfully,

Bradley M. Mueller, MA, Compliance Specialist

Bradley M. Mueller

STOF-THPO, Compliance Review Section

30290 Josie Billie Hwy, PMB 1004

Clewiston, FL 33440

Final EIS Moody AFB Comprehensive Airspace Initiative	April 2023
F-3. State Historic Preservation Office Section 106 Consultation Letter	rs

FORMAT PAGE

Section 106 Consultation Request Letter with the Georgia SHPO

DEPARTMENT OF THE AIR FORCE 23D CIVIL ENGINEER SQUADRON (ACC) MOODY AIR FORCE BASE GEORGIA

John L. Eunice, III Deputy Base Civil Engineer 23d Civil Engineer Squadron 3485 Georgia Street Moody AFB, GA 31699-1707

D 1 JUN 2020

Dr. David Crass, Division Director Deputy State Historic Preservation Officer DNR Historic Preservation Division Jewett Center for Historic Preservation 2610 GA Highway 155, SW Stockbridge GA 30281-5236

Dear Dr. Crass:

The United States Air Force (Air Force) is proposing to modify existing and create new special use airspace (SUA) in the Moody Airspace Complex. The Air Force has prepared an Environmental Impact Statement (EIS) under the National Environmental Policy Act to evaluate potential environmental impacts associated with the Comprehensive Airspace Initiative for Moody Air Force Base (AFB). In accordance with Section 106 of the National Historic Preservation Act (NHPA; 54 United States Code 306108) and its implementing regulations at 36 Code of Federal Regulations (CFR) Part 800, the Air Force, Moody AFB, is initiating consultation with you regarding an undertaking that has the potential to affect historic properties.

Located above 28 counties in south Georgia and north Florida, the Moody Airspace Complex (Figure 1) consists primarily of mid- to higher-altitude SUA (8,000 feet above mean sea level [MSL] up to 18,000 feet) with limited low-altitude SUA (less than 8,000 feet MSL). Aircrews of A-10C, A-29, HH-60G, and HC-130J aircrafts assigned to Moody Air Force AFB, Georgia, have severely constrained access to existing low-altitude SUAs wherein they can conduct required training operations at low altitude to gain operational proficiency and meet their low-altitude close air support (CAS), personnel recovery (PR), and combat search and rescue (CSAR) mission objectives for combat readiness. As part of the proposed undertaking, the Comprehensive Airspace Initiative at Moody AFB would provide additional low-altitude Air Force-controlled SUA supporting the low-altitude training missions (CSAR, PR, CAS) for aircrews stationed at Moody AFB, which are currently limited to the Moody Airspace Complex's few existing, congested low-altitude SUAs.

The Air Force has preliminarily identified three action alternatives to expand low-altitude training airspace at Moody AFB. All three alternatives would create new low-altitude Military

Global Power for America

Operations Areas (MOAs) beneath and within the lateral confines of existing MOAs and Restricted Areas of the Moody Airspace Complex. The three action alternatives are:

- Create new low-altitude MOAs with a floor of 1,000 feet above ground level (AGL) (Alternative 1);
- Create new low-altitude MOAs with a floor of 2,000 feet AGL (Alternative 2); and
- Create new low-altitude MOAs with a floor of 4,000 feet AGL (Alternative 3).

While the alternatives are independent of each other, the decision maker may choose to implement one alternative, a combination of low-altitude MOAs from among the three alternatives, or none of the alternatives based on the analysis provided in the EIS. Training within the low-altitude MOAs would include the use of chaff and flares, with flare use being limited to altitudes above 2,000 feet AGL. Urban CAS, helicopter landing zones, drop zones, and the use of training ordnance at the Grand Bay Range would continue unchanged under all three alternatives. There would be neither a change in the number of sorties at Moody AFB airfield nor would there be any change in the number of aircraft operations in the Moody Airspace Complex under any of the three alternatives. Further, no ground-disturbing activities are associated with any of the three alternatives.

On 10 December 2019, project consultants had a preliminary conference call with Georgia Historic Preservation Division staff members Jennifer Dixon (Program Manager, Environmental Review and Preservation Planning) and Jennifer Bedell (Archaeology Program Manager and Tribal Liaison) to discuss the cultural resources identification effort for the project, including the delineation of the project area of potential effects (APE). Given the geographical scope of the Proposed Action and the variance of potential effects within the MOAs, it was determined that rather than providing an inventory of all historic and archaeological resources located beneath the entirety of the MOAs, the APE could be refined to focus on areas in which the potential for visual, noise, and vibration impacts from the Proposed Action would be more probable. Upon examining the Proposed Action and alternatives, an APE was delineated for the cultural resources investigation that was refined from the overall study area (Figure 2). The APE for cultural resources is limited to the Grand Bay and Moody 2 North MOAs, which overlie four counties (Atkinson, Clinch, Lanier, and Lowndes) in Georgia, the location of the lowest proposed aircraft operations, and associated noise and visual impacts.

The attached Cultural Resources Sensitive Receptors Report, Moody Air Force Base Comprehensive Airspace Initiative: Phase I Cultural Resources Investigation (January 2020) contains additional information about the APE delineation, the National Register of Historic Places (NRHP) eligibility evaluations, and assessment of effects. A total of 106 previously recorded archaeological sites, 336 previously recorded aboveground resources, and four NRHP-listed properties are located within the refined APE. Rather than conducting intensive survey and evaluation over large geographical extents, those unevaluated resources in the portions of Atkinson, Clinch, Lanier, and Lowndes counties that are located beneath the proposed Grand Bay and Moody 2 North MOAs are considered eligible for listing in the NRHP for the purpose of assessing potential effects from this undertaking under Section 106 of the NHPA. Under the Proposed Action, the frequency of aircraft operations would be reduced within the APE, and noise levels are anticipated to remain comparable to existing conditions under the Proposed Action. The potential visual, noise, and vibration impacts in the APE would be negligible to

minimal and would not alter any characteristics of historic properties in a manner that would diminish a property's historic integrity.

Moody AFB is consulting with the Muscogee (Creek) Nation, Coushatta Tribe of Louisiana, Alabama-Quassarte Tribal Town, Coushatta Tribe of Louisiana, Mississippi Band of Choctaw Indians, Choctaw Nation of Oklahoma, Poarch Band of Creek Indians, Thlopthlocco Tribal Town, Seminole Nation of Oklahoma, Kialegee Tribal Town, Muscogee Nation of Florida, Seminole Tribe of Florida, Caddo Nation, United Keetoowah Band of Cherokee Indians, Alabama Coushatta Tribe of Texas, and the Cherokee Nation regarding the Proposed Action and the identification and evaluation of historic properties of traditional or religious significance. If any historic properties are identified in the APE during this tribal consultation, Moody AFB will notify your office and continue consultation at that time.

Pursuant to 36 CFR 800.4(d), the Air Force has determined that no historic properties will be affected by the Comprehensive Airspace Initiative for Moody AFB. We request your comment and/or concurrence on the finding of No Historic Properties Affected. If we do not receive your comments and/or concurrence within the required 30 days, we will assume concurrence and proceed with the undertaking as described.

Please contact Mr. Lorence Busker, 23d Civil Engineer Squadron at (229) 257-2396 or via email to lorence.busker@us.af.mil if you have any questions.

Sincerely,

JOHN L. EUNICE, III, GS-14, DAF Deputy Base Civil Engineer

Attachments

- 1. Figure 1 Moody Airspace Complex
- 2. Figure 2 Area of Potential Effects

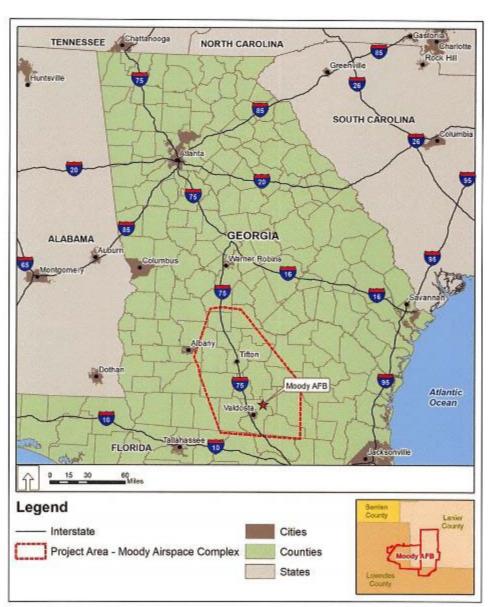


Figure 1. Moody Airspace Complex

Appendix F F-24

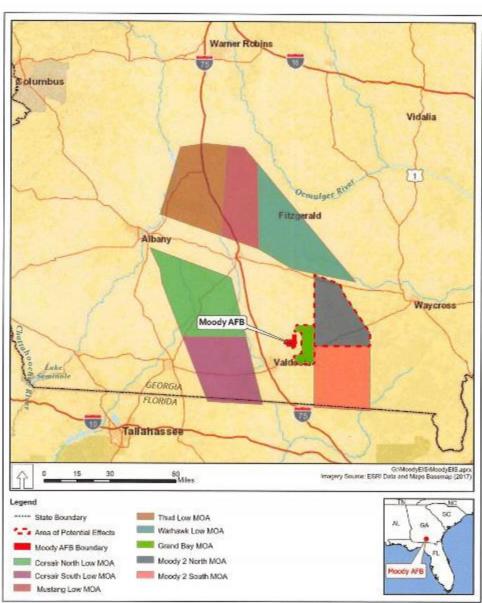


Figure 2. Area of Potential Effects

Georgia SHPO Section 106 Consultation Concurrence Letter

MARK WILLIAMS COMMISSIONER DR. DAVID CRASS DIVISION DIRECTOR

July 22, 2020

John L. Eunice, III Deputy Base Civil Engineer 23D Civil Engineer Squadron 3485 Georgia Street Moody Air Force Base, Georgia 31699-1707 Attn: Lorence Busker

RE: Moody AFB: Special Use Airspace Modification/Creation

Lanier County, et. al., Georgia

HP-191121-002

Dear Mr. Eunice:

The Historic Preservation Division (HPD) has reviewed the information submitted concerning the above referenced project. Our comments are offered to assist the U.S. Department of the Air Force and Moody Air Force Base (AFB) in complying with the provisions of Section 106 of the National Historic Preservation Act of 1966, as amended (NHPA).

The subject project consists of reducing the low-altitude Military Operations Areas (MOAs) beneath seven (7) existing Moody AFB Special Use Airspaces (SUAs) over 22 counties in Georgia, including lowering five (5) to 1,000 to 4,000 feet (ft.) above ground level (AGL) and lowering two (2) to 100 ft. AGL. It is HPD's understanding that existing Operational Constraints, such as avoiding direct overflight under 500 ft. AGL of occupied off-base residential structures and similar, will remain in place. Based on the information provided, HPD concurs that there are multiple National Register of Historic Places (NRHP)-eligible, listed, and unknown properties within the proposed project area. However, it is HPD's opinion that the subject project, as proposed, will have no adverse effect to historic properties within the project area, as defined in 36 CFR Part 800.5(d)(1), due to the minor incremental overall impact in some areas with the potential to effect resources, relative to the slight increase of individual distinct overflights in the same areas.

This letter evidences consultation with our office for compliance with Section 106 of the NIIPA. It is important to remember that any changes to this project as it is currently proposed may require additional consultation. HPD encourages federal agencies to discuss such changes with our office to ensure that potential officets to historic resources are adequately considered in project planning.

Please refer to project number HP-191121-002 in any future correspondence regarding this project. If we may be of further assistance, please contact me at (770) 389-7851 or Jennifer.dixon@dnr.ga.gov.

Sincerely,

Jennifer Dixon, MHP, LEED Green Associate

Program Manager

Environmental Review & Preservation Planning

JEWETT CENTER FOR HISTORIC PRESERVATION 2610 GA HWY 155, SW | STOCKBRIDGE, GA 30281 770.389.7844 | FAX 770.389.7878 | WWW.GEORGIASHPO.ORG

Florida SHPO Section 106 Consultation Concurrence Letter

RON DESANTIS Governor LAUREL M. LEE Secretary of State

Mr. John L. Eunice, III Deputy Base Civil Engineer 23d Civil Engineer Squadron 3485 Georgia Street Moody AFB GA 31699-1707 October 26, 2020

RE: DHR Project File No.: 2020-6511

Environmental Impact Statement – Moody Air Force Base Comprehensive Airspace Initiative

Cultural Resources Sensitive Receptors Report

Moody Air Force Base (Georgia)

Jefferson, Madison, Hamilton and Columbia Counties, Florida

Dear Mr. Eunice:

The Florida State Historic Preservation Officer reviewed the referenced project in accordance with Section 106 of the National Historic Preservation Act of 1966, as amended, and its implementing regulations in 36 CFR Part 800: Protection of Historic Properties.

Based on the information provided, this office concurs with your finding that *No Historic Properties Affected* by this undertaking.

This office would like to compliment you and your office on the thoroughness and quality of the submittal. If you have any questions, please contact Scott Edwards, Historic Preservationist, by electronic mail scott.edwards@dos.myflorida.com, or at 850.245.6333 or 800.847.7278.

Sincerely

Timothy A. Parsons, Ph.D.

Director, Division of Historical Resources and State Historic Preservation Officer

Division of Historical Resources R.A. Gray Building • 500 South Bronough Street • Tallahassee, Florida 32399 850.245.6300 • 850.245.6436 (Fax) • FLHeritage.com

April 2023

F-4. Tribal Consultation Letters

Appendix F F-30

April 2023

F-4.1. Example Tribal Consultation Letter

F-31

DEPARTMENT OF THE AIR FORCE HEADQUARTERS 23D WING (ACC) MOODY AIR FORCE BASE, GEORGIA

23 WG/CC 23 Flying Tiger Way Bldg 105 Suite 1 Moody AFB, GA 31699

0 5 JUN 2020

Principal Chief Chuck Hoskin, Jr. The Cherokee Nation PO Box 948 Tahlequah OK 74465

Dear Principal Chief Hoskin:

Moody Air Force Base (AFB) is proposing to modify existing and create new special use airspace (SUA) in the Moody Airspace Complex. To take into account various environmental concerns, the Air Force is engaging early with the appropriate resource and regulatory agencies as it formulates the undertaking. The Air Force is also preparing an Environmental Impact Statement (EIS) under the National Environmental Policy Act to evaluate potential environmental impacts associated with the Comprehensive Airspace Initiative for Moody AFB. In accordance with Section 106 of the National Historic Preservation Act (NHPA; 54 United States Code § 306108) and its implementing regulations at 36 Code of Federal Regulations (CFR) Part 800, the Air Force, Moody AFB is initiating government-to-government consultation with you regarding an undertaking that has the potential to affect historic properties.

Located above 28 counties in south Georgia and north Florida, the Moody Airspace Complex (Figure 1) consists primarily of mid- to higher-altitude SUA (8,000 feet above mean sea level [MSL] up to 18,000 feet) with limited low-altitude SUA (less than 8,000 feet MSL). Aircrews of A-10C, A-29, HH-60G, and HC-130J aircraft assigned to Moody AFB, Georgia, have severely constrained access to existing low-altitude SUAs wherein they can conduct required training operations at low altitude to gain operational proficiency and meet their low-altitude close air support (CAS), personnel recovery (PR), and combat search and rescue (CSAR) mission objectives for combat readiness. As part of the proposed undertaking, the Comprehensive Airspace Initiative at Moody AFB would provide additional low-altitude Air Force-controlled SUA supporting the low-altitude training missions (CSAR, PR, CAS) for aircrews stationed at Moody AFB, which are currently limited to the Moody Airspace Complex's few existing, congested low-altitude SUAs.

The Air Force has preliminarily identified three action alternatives to expand low-altitude training airspace at Moody AFB. All three alternatives would create new low-altitude Military Operations Areas (MOAs) beneath and within the lateral confines of existing MOAs and Restricted Areas of the Moody Airspace Complex. The three action alternatives are:

- Create new low-altitude MOAs with a floor of 1,000 feet above ground level (AGL) (Alternative 1);
- · Create new low-altitude MOAs with a floor of 2,000 feet AGL (Alternative 2); and
- Create new low-altitude MOAs with a floor of 4,000 feet AGL (Alternative 3).

While the alternatives are independent of each other, the decision maker may choose to implement one alternative, a combination of low-altitude MOAs from among the three alternatives, or none of the alternatives based on the analysis provided in the EIS. Training within the low-altitude MOAs would include the use of chaff and flares, with flare use being limited to altitudes above 2,000 feet AGL. Urban CAS, helicopter landing zones, drop zones, and the use of training ordnance at the Grand Bay Range would continue unchanged under all three alternatives. There would be neither a change in the number of sorties at Moody AFB airfield nor would there be any change in the number of aircraft operations in the Moody Airspace Complex under any of the three alternatives. Further, no ground-disturbing activities are associated with any of the three alternatives.

A scoping letter was sent to you in November 2019 requesting your assistance in identifying any properties of religious and cultural significance to your tribe within the project's area of potential effects (APE). Thank you for your email on 6 December 2019 in response to the scoping letter. On 10 December 2019, project consultants had a preliminary conference call with Georgia Historic Preservation Division (HPD) staff members Jennifer Dixon (Program Manager, Environmental Review and Preservation Planning) and Jennifer Bedell (Archaeology Program Manager and Tribal Liaison) to discuss the cultural resources identification effort for the project, including the delineation of the APE for the cultural resources investigation. Given the geographical scope of the Proposed Action and the variance of potential effects within the MOAs, it was determined that rather than providing an inventory of all historic and archaeological resources located beneath the entirety of the MOAs, the APE could be refined to focus on areas in which the potential for visual, noise, and vibration impacts from the Proposed Action would be more probable. Upon examining the Proposed Action and alternatives, an APE was delineated for the cultural resources investigation that was refined from the overall study area (Figure 2). In response to your tribe's inquiry, the APE for cultural resources is limited to the Grand Bay and Moody 2 North MOAs, which overlie four counties (Atkinson, Clinch, Lanier, and Lowndes) in Georgia, the location of the lowest proposed aircraft operations, and associated noise and visual impacts.

The delineation of the refined APE for the cultural resources investigation, summary of historic properties identified in the APE, and assessment of effects is summarized in a *Cultural Resources Sensitive Receptors Report*, which is available upon request. A total of 106 previously recorded archaeological sites, 336 previously recorded aboveground resources, and four National Register of Historic Places (NRHP)-listed properties are located within the refined APE. Rather than conducting intensive survey and evaluation over large geographical extents, those unevaluated resources in the portions of Atkinson, Clinch, Lanier, and Lowndes counties that are located beneath the proposed Grand Bay and Moody 2 North MOAs are considered eligible for listing in the NRHP for the purpose of assessing potential effects from this undertaking under Section 106 of the NHPA. Under the Proposed Action, the frequency of aircraft operations would be reduced within the refined APE, and noise levels are anticipated to remain comparable to existing conditions under the Proposed Action. The potential visual, noise, and vibration

impacts in the APE would be negligible to minimal and would not alter any characteristics of historic properties in a manner that would diminish a property's historic integrity.

Pursuant to 36 CFR 800.4(d), the Air Force's understanding is that the Proposed Action would not result in impacts on historic properties or properties of religious and cultural significance. As part of consultation with your tribe, we invite your tribe to identify any properties of cultural and religious significance within the APE. We request your comments within 30 days of receipt of this letter; however, if you need additional time to evaluate the Proposed Action, the Air Force will consider all matters submitted. Please contact Mr. Lorence Busker, 23d Civil Engineer Squadron at (229) 257-2396 or via email to lorence.busker@us.af.mil if you have any questions.

Sincerely,

DANIEL P. WALLS, Colonel, USAF Commander

Attachments

- 1. Figure I Moody Airspace Complex
- 2. Figure 2 Area of Potential Effects

cc: Ms. Elizabeth Toombs, Special Projects Officer

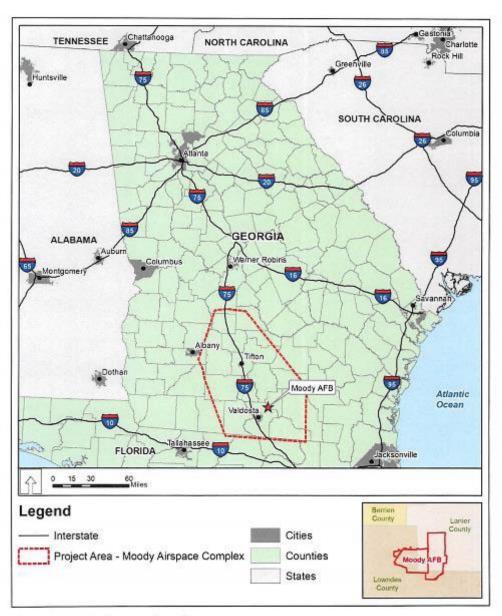


Figure 1. Moody Airspace Complex

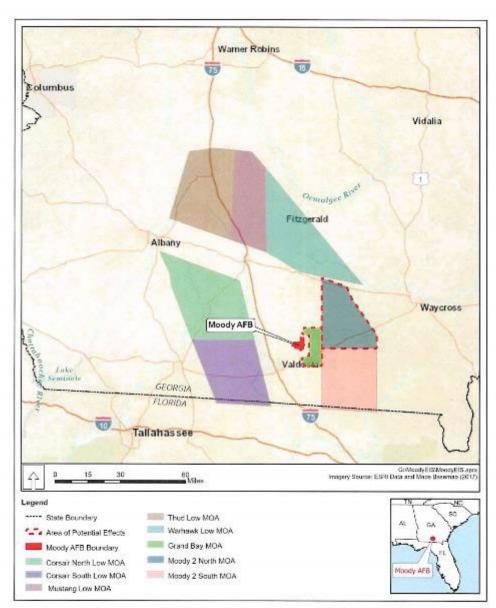


Figure 2. Area of Potential Effects

April 2023

F-5. Tribal Consultation Responses

Appendix F F-40

Seminole Tribe of Florida, Tribal Historic Preservation Office

From: BUSKER, LORENCE T GS-12 USAF ACC 23 CES/CEIEA

Sent: Wednesday, July 15, 2020 9:10 AM

To: Eric Webb; SWICK, NOLAN T GS-13 USAF AFMC AFCEC/CZN

Cc: LEE, GREGORY W GS-13 USAF ACC 23 CES/CEIE

Subject: FW: Moody Air Force Base, Moody Airspace Complex, Special Use Airspace

From: Bradley Mueller

Sent: Wednesday, July 15, 2020 10:05 AM

To: BUSKER, LORENCE T GS-12 USAF ACC 23 CES/CEIEA

Subject: [Non-DoD Source] Moody Air Force Base, Moody Airspace Complex, Special Use Airspace

SEMINOLE TRIBE OF FLORIDA TRIBAL HISTORIC PRESERVATION OFFICE

TRIBAL OFFICERS
MARGELLUS W. OSCEOLA JR.
CHARMAN
MITCHELL CYPRESS
WICE CHARMAN
LAYONNE ROSE
SEGRETARY
PETER A. HAHN

Due to the Coronavirus I am telecommuting until further notice. Please contact via emails since I do not have access to office phone messages.

July 15, 2020

Mr. Lorence Busker 23⁴ Civil Engineer Squadron Moody Air Force Base, Georgia Phone:

Email:

Subject: Moody Air Force Base, Moody Airspace Complex, Special Use Airspace

THPO Compliance Tracking Number: N/A

Bradley M. Mueller

Dear Mr. Busker,

Thank you for contacting the Seminole Tribe of Florida – Tribal Historic Preservation Office (STOF-THPO) Compliance Section regarding the Moody Air Force Base, Moody Airspace Complex, Special Use Airspace Project. The proposed undertaking lies outside of the current STOF Area of Interest, consequently we must decline your offer to consult. Stay safe and please feel free to contact us with any questions or concerns.

Respectfully,

1

Bradley M. Mueller, MA, Compliance Specialist STOF-THPO, Compliance Review Section 30290 Josie Bilie Hwy, PMB 1004 Clewiston, FL 33440

Office Fax: Email:

Web: www.stofthpo.com

Cherokee Nation, Tribal Historic Preservation Office

From: Elizabeth Toombs

Sent: Monday, July 13, 2020 10:00 AM

To: BUSKER, LORENCE T GS-12 USAF ACC 23 CES/CEIEA

Subject: [Non-DoD Source] FW: Moody Air Force Base

Mr. Busker:

This Office recently received notification about three action alternatives to expand low-altitude training airspace at Moody Air Force Base. In addition to the counties outlined in our December 10, 2019 email, Lanier County also is located outside the Cherokee Nation's Area of Interest. Thus, this Office respectfully defers to federally recognized Tribes that have an interest in this landbase at this time.

Thank you for the opportunity to comment upon this proposed undertaking. Please contact me if there are any questions or concerns.

Wado,

Elizabeth Toombs, Tribal Historic Preservation Officer

Cherokee Nation

Tribal Historic Preservation Office

PO Box 948

Tahlequah, OK 74465-0948

918.453.5389

From: Elizabeth Toombs

Sent: Tuesday, December 10, 2019 1:08 PM

To: 'BUSKER, LORENCE T GS-12 USAF ACC 23 CES/CEIEA'

Subject: RE: Moody Air Force Base

Dear Lorence Busker:

Many thanks for the additional details. The Moody Air Force Base proposed air space project is located within the following Georgia counties: Atkinson, Ben Hill, Berrien, Brooks, Clinch, Colquitt, Cook, Crisp, Echols, Irwin, Lowndes, Tift, Turner, Wilcox, and Worth. These aforementioned counties and Florida are outside the Cherokee Nation's Area of Interest. Thus, this Office respectfully defers to federally recognized Tribes that have an interest in this landbase.

Yes, please update the THPO contact with my information below this note.

Thank you for the opportunity to comment upon this proposed undertaking. Please contact me if there are any questions or concerns.

Wado,

Elizabeth Toombs, Tribal Historic Preservation Officer

Cherokee Nation

Tribal Historic Preservation Office

PO Box 948

Tahlequah, OK 74465-0948

918.453.5389

From: BUSKER, LORENCE T GS-12 USAF ACC 23 CES/CEIEA

Sent: Tuesday, December 10, 2019 12:13 PM

To: Elizabeth Toombs

Cc: SWICK, NOLAN T GS-13 USAF AFMC AFCEC/CZN; LEE, GREGORY W GS-13 USAF

ACC 23 CES/CEIE; Eric Webb

Subject: <EXTERNAL> RE: Moody Air Force Base

NOTICE: THIS EMAIL CONTAINS AN ATTACHMENT SENT FROM AN EXTERNAL SENDER. IF YOU DO NOT KNOW THE SENDER OR WERE NOT EXPECTING THIS EMAIL, DO NOT OPEN ANY EMAIL ATTACHMENTS AND DELETE THIS MESSAGE.

Thank you: The Cherokee Nation - Information Technology Department

Dear Elizabeth Toombs,

Thank you for the interest in the Moody air space project. Please find attached a brochure as well as a figure which shows the lateral extent of the proposed air space over Georgia and parts of Florida. The brochure briefly explains the proposed action. It should be noted that the lateral extent is unchanged from what is currently approved. The proposal would create new air space, usable for military training, below the existing airspace. Please feel free to call or write with any further questions. I would appreciate any written comments you have so that they can be addressed in the Environmental Impact Statement which will be prepared for this project.

I appreciate your clarification on who currently holds the Principal Chief position. I will correct our records and address future correspondence to the correct person. On that same topic, is Sheila Bird the current Tribal Historic Preservation Officer or are you now the one who that correspondence should be addressed to? We try to keep our records up to date but do not always succeed.

Thank you,

From: Elizabeth Toombs

Sent: Friday, December 6, 2019 3:50 PM

To: BUSKER, LORENCE T GS-12 USAF ACC 23 CES/CEIEA

Subject: [Non-DoD Source] Moody Air Force Base

Dear Lorence Busker:

The Cherokee Nation recently received a review request about creating new special use airspace in the Moody Airspace Complex. When you have the opportunity, could you provide the Georgia counties that fall within the proposed Area of Potential Effects (APE)? This information will help this Office map the proposed project with our database.

Also, as a housekeeping note, our current Principal Chief is Chuck Hoskin, Jr.

Thank you for your time, details, and understanding. Please let me know if there are any questions or concerns.

Wado,

Elizabeth Toombs, Tribal Historic Preservation Officer

Cherokee Nation

Tribal Historic Preservation Office

PO Box 948

Tahlequah, OK 74465-0948

918.453.5389

APPENDIX G. AIRSPACE OBSTRUCTIONS ANALYSIS

MOODY AIRSPACE INITIATIVE AIRSPACE OBSTRUCTIONS ANALYSIS

TABLE OF CONTENTS

G.1 INTRODUCTION	G-7
G.2. OBSTRUCTIONS ANALYSIS	G-7
LIST OF FIGURES	
Figure G-1. Towers underlying the Moody Airspace Complex	G-10
LIST OF TABLES	
Table G-1. Airspace Obstructions beneath the Moody Airspace Complex	G- 9

LIST OF ACRONYMS AND ABBREVIATIONS

AGL above ground level

FAA Federal Aviation Administration

FAR Federal Aviation Regulations

MOA Military Operations Area

MOCA minimum obstruction clearance

nm nautical mile

G.1 INTRODUCTION

The Federal Aviation Administration (FAA) is responsible for administering air traffic regulations on the flight of aircraft, including regulations on safe altitudes for the following:

- Navigating, protecting, and identifying aircraft
- Protecting individuals and property on the ground
- Using the navigable airspace efficiently
- Preventing collisions between aircraft, between aircraft and land or water vehicles, and between aircraft and airborne objects

By protecting individuals and property on the ground, the FAA analyzes the proposed construction or alteration of a facility that could affect navigable airspace. This is completed through an Obstruction Evaluation/Airport Airspace Analysis Process. Under this process, a proponent for a project must file FAA Form 74601, *Notice of Proposed Construction or Alteration*, for any of a number of project types as describe in the Federal Aviation Regulations (FAR) Part 77.13, including as per FAR §77.13(a)(1), any structure with a height more than 200 feet above ground level (AGL).

After a project proponent submits FAA Form 74601 for review, the FAA conducts an initial aeronautical study to determine whether the proposed structure exceeds obstruction standards under the provision of the FAR Part 77.23. A proposed object is an obstruction to air navigation if any of the following standards are exceeded:

- A height more than 500 feet AGL at the object site (§ 77.23(a)(1))
- A height AGL or above the airport elevation, whichever is greater, exceeding 200 feet within 3 nautical miles (nm) of the airport, and that height increases at a rate of 100 feet per nm up to 500 feet within 6 miles (§ 77.23(a)(2))
- A height that increases a minimum instrument flight altitude within a terminal area. This standard references instrument procedure criteria such as the Standard for Terminal Instrument Procedures (§ 77.23(a)(3))
- A height that increases a minimum obstruction clearance (MOCA) under en route criteria (§77.23(a)(4))
- The surface of a takeoff and landing area of an airport or any imaginary surface defined in later sections for civil airports, for military airports, and for heliports (§ 77.23(a)(5))

Therefore, all objects are reviewed by the FAA to determine if they pose an obstruction to air navigation.

G.2. OBSTRUCTIONS ANALYSIS

Existing Conditions: A total of 22 structures underlying the complex are considered obstructions to air navigation. Of those structures, 16 towers exceed the 100-foot AGL floor of the Moody 2 South Military Operations Areas (MOA), 3 towers exceed the 500-foot AGL floor of the Moody 2 North MOA, and 3 towers exceed the 500-foot AGL floor of Restricted Area 3008C.

Environmental Consequences: Because the Moody Airspace Initiative proposes to chart new low-altitude MOAs beneath existing MOAs and lower the floor of Moody 2 North MOA from 500 feet to 100 feet, an analysis to determine the presence of underlying structures that could intrude into the low-altitude and be considered obstructions to air navigation was warranted and conducted. Based upon a review of all structures underlying the Moody Airspace Complex, it was determined that towers would be the tallest structures that could intrude into the proposed low-altitude MOAs. The Federal Communications Commission maintains a database containing the location and structural information (i.e., dimensions) for each tower licensed in the United States. That database was queried to determine if any of these structures would exceed the low-altitude floors of any of the proposed or reconfigured MOAs. The following summarizes the impacts anticipated under each of the action alternatives addressed in the EIS.

Under Alternative 1, which is the implementation alternative for the Proposed Action with the lowest altitude floors for the proposed low-altitude MOAs, no towers exceed the proposed 1,000-foot AGL floor of the Corsair South Low, Mustang Low, and Warhawk Low MOAs or the 4,000-foot AGL floor of the Thud Low MOA (**Figure G-1**). A total of 24 towers would be overlain by the proposed low-altitude MOAs in the Moody Airspace Complex under Alternative 1. Tower intrusions into the proposed low-altitude MOAs are listed in **Table G-1** and shown in **Figure G-1** and are briefly explained as follows:

- One 1,000-foot height tower would meet and be considered an intrusion into the new 1,000-foot AGL floor of the Corsair North Low MOA. This tower is marked with a navigation beacon in accordance with existing regulations.
- Four structures would intrude into the new 100-foot AGL floor Grand Bay MOA. All of these towers are marked with navigation beacons in accordance with existing regulations.
- Nineteen structures would intrude into the new 100-foot AGL floor of the Moody 2 North MOAs. Sixteen of these towers are marked with navigation beacons per existing regulations for structures with heights at or greater than 200 feet. The remaining three, with heights less than 200 feet, are not required to have navigational beacons under the existing regulations.

Under Alternatives 2 and 3, only the 23 structures identified under the proposed Grand Bay MOA and lowered altitude floor of the Moody 2 North MOA would intrude into those low-altitude MOAs.

Table G-1. Airspace Obstructions beneath the Moody Airspace Complex

Proposed MOA *	Registration Number	Height (AGL)	Lighting Type	Latitude	Longitude
Corsair North Low	1255221	1,000	Red beacon	31.33138889	-83.86194444
Grand Bay	1220524	255	Red beacon	30.89552778	-83.10047222
Grand Bay	1018688	364	Red beacon	31.05677778	-83.09313889
Grand Bay	1013661	415	White and red beacons	31.05719444	-83.091
Grand Bay	1040753	485	Red beacon	31.063	-83.07247222
Moody 2 North	1262758	260	Red beacon	30.96191667	-82.93805556
Moody 2 North	1310987	255	Red beacon	30.96408333	-82.66172222
Moody 2 North	1223285	310	Red beacon	30.977	-82.90147222
Moody 2 North	1216840	309	Red beacon	30.99930556	-82.86625
Moody 2 North	1031773	417	Red beacon	31.01305556	-82.75444444
Moody 2 North	1018695	188	Red beacon	31.03230556	-82.79569444
Moody 2 North	1200533	312	Red beacon	31.03444444	-82.86388889
Moody 2 North	1205278	190	None	31.03686111	-82.74569444
Moody 2 North	1218369	199	Red beacon	31.04013889	-82.73852778
Moody 2 North	1040979	457	Red beacon	31.04208333	-82.72294444
Moody 2 North	1286614	100	None	31.04722222	-82.76222222
Moody 2 North	1268629	290	Red beacon	31.07458333	-83.00775
Moody 2 North	1023931	227	Red beacon	31.09802778	-82.8195
Moody 2 North	1026321	240	Red beacon	31.09805556	-82.81972222
Moody 2 North	1263144	290	Red beacon	31.14777778	-83.00302778
Moody 2 North	1262094	257	Red beacon	31.20041667	-82.88047222
Moody 2 North	1013477	300	Red beacon	31.29436111	-82.86319444
Moody 2 North	1308873	164	None	31.30847222	-82.90386111
Moody 2 North	1018687	310	Red beacon	31.32052778	-82.97108333

AGL – above ground level; MOA – Military Operations Area

Appendix G G-9

^{*}The Grand Bay MOA and Moody 2 North MOA would have a floor of 100 feet AGL under all three implementation alternatives. The Corsair North Low MOA would have a floor of 1,000 feet AGL only under Alternative 1. Under Alternatives 2 and 3, the Corsair North Low MOA would have a floor of 2,000 feet AGL and 4,000 feet AGL, respectively.

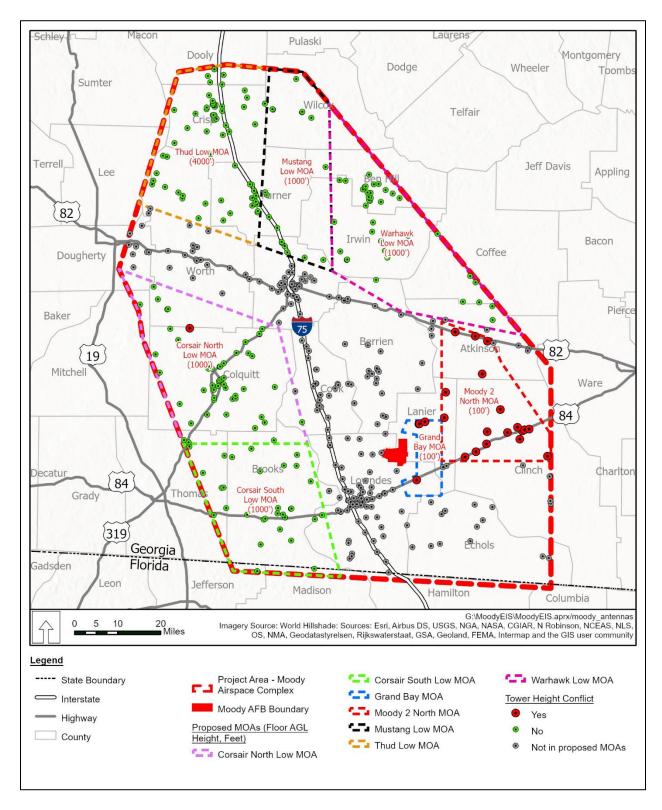


Figure G-1. Towers underlying the Moody Airspace Complex

APPENDIX H. AERONAUTICAL PROPOSAL

Eastern Service Center

1701 Columbia Avenue College Park, Georgia 30337

PROPOSAL TO ESTABLISH CORSAIR NORTH/SOUTH LOW, WARHAWK LOW, MUSTANG LOW, GRAND BAY, AND MODIFY MOODY 2 NORTH MILITARY OPERATIONS AREAS AIRSPACE STUDY 21-ASO-003-NR MOODY AFB, GA

TO ALL CONCERNED:

The Federal Aviation Administration (FAA) is considering a request by the United States Air Force to create Military Operations Areas (MOAs) in the vicinity of Moody AFB, GA. The proposed action would create new low-altitude MOAs beneath the existing Corsair North, Corsair South, Warhawk MOAs, and Restricted Area R-3008C and lower the floor of Moody 2 North MOA in the Moody Airspace Complex. The purpose of the new low-altitude MOAs is to provide adequate training floors for operations, including close air support (CAS), personnel recovery (PR), and combat search and rescue (CSAR) at the installation. Prior to reaching a final decision, the FAA is providing an opportunity for the public to comment on any aeronautical impacts that would result from approving this MOA request.

At Moody AFB, the 23 FG, 476 FG, 820 BDG, 81st Fighter Squadron, and 347th Rescue Group all require low-altitude airspace to support their training missions. A total of 67 percent of training operations for Moody AFB units occur in low-altitude airspace (less than 8,000 feet MSL), and for some units, between 85 and 90 percent of their mission training requirements are conducted at altitudes too low to be accommodated by the majority of SUAs in the Moody Airspace Complex. This severely limits these units' abilities to meet their proficiency requirements. Consequently, the various units operating at Moody AFB either compete for the opportunity to train in the limited Moody Airspace Complex low-altitude MOAs and Restricted Areas or attempt to schedule other low-altitude SUA complexes in the southeast region.

The current Moody Airspace Complex consists primarily of mid-to higher-altitude MOAs, and the A-10C, A-29, HH-60W, and HC-130J aircrews assigned to Moody AFB have severely constrained access to existing low-altitude MOAs and Restricted Areas wherein they can conduct required training operations at low altitude to gain operational proficiency and meet their mission objectives for combat readiness. The proposed low-altitude MOAs would enable optimized training in the Moody Airspace Complex and remove constraints on CAS and CSAR training so that aircrews would be current, qualified, and proficient at operating at various altitudes for these operations.

The Proposed Action would not require changes in the types or numbers of aircraft based at the installation, appreciable increases in the number of flights or sorties, alterations in types of airfield operations, or additions of training operations. However, the airspace would result in the redistribution of aircraft operations from existing low-altitude SUAs (i.e., Moody 2 North MOA, Moody 2 South MOA, and R-3008A, R-3008B, and R-3008C) to the new low-altitude MOAs. It is not anticipated that any increases in overall operations would occur as a result of this redistribution; instead, the proposed action would shift the timing of training operations to more daytime hours and spread out the training requirements at low altitudes over a greater area of airspace instead of being concentrated entirely in Moody 2 North and Moody 2 South MOAs and the Restricted Areas R-3008A, R-3008B, and R-3008C.

The specifics of the proposed airspace follow:

Corsair South Low MOA, GA [ESTABLISH]

Boundaries: Beginning at lat. 31°00'00" N., long. 83°52'59" W.;

to lat. 31°00'00" N., long. 83°28'01" W.; to lat. 30°37'00" N., long. 83°21'20" W.; to lat. 30°38'01" N., long. 83°43'00" W.;

to the point of beginning. Excluding the airspace 1500' AGL and below within a 3 NM radius of Thomasville Regional Airport (TVI) and Quitman Brooks County Airport (4J5). 1,000 feet AGL up to but not including 8,000 feet MSL.

Altitudes: 1,000 feet AGL up to but not including 8,000 feet MSL.

Times of use: 0800-0100, Monday—Thursday; 0800-2200 Friday; closed

Saturday, Sunday, holidays, other times by NOTAM 6 hours

in advance.

Controlling Agency: FAA, Jacksonville ARTCC

Using Agency: U.S. Air Force, 23d Wing, Moody AFB, GA.

Corsair North Low MOA, GA [ESTABLISH]

Boundaries: Beginning at lat. 31°12'02" N., long. 83°58'26" W.;

to lat. 31°21'45" N., long. 83°45'00" W.; to lat. 31°23'15" N., long. 83°44'14" W.; to lat. 31°20'00" N., long. 83°33'50" W.; to lat. 31°00'00" N., long. 83°28'01" W.; to lat. 31°00'00" N., long. 83°52'59" W.;

to the point of beginning. Excluding the airspace 1500' AGL and below within a 3 NM radius of Spence Airport (MUL), Cook County Airport (15J), and Moultrie Regional Airport

(MGR).

Altitudes: 1,000 feet AGL up to but not including 8,000 feet MSL.

Times of use: 0800-0100, Monday – Thursday; 0800-2200 Friday; closed

Saturday, Sunday, holidays, other times by NOTAM 6 hours

in advance.

Controlling Agency: FAA, Jacksonville ARTCC

Using Agency: U.S. Air Force, 23d Wing, Moody AFB, GA.

Mustang Low MOA, GA [ESTABLISH]

Boundaries: Beginning at lat. 31°35'30" N., long. 83°37'49" W.;

to lat. 31°35'30" N., long. 83°23'08" W.; to lat. 31°29'40" N., long. 83°23'00" W.; to lat. 31°34'06" N., long. 83°37'55" W.;

to the point of beginning.

Altitudes: 1,000 feet AGL up to but not including 8,000 feet MSL.

Times of use: 0800-0100, Monday – Thursday; 0800-2200 Friday; closed

Saturday, Sunday, holidays, other times by NOTAM 6 hours

in advance.

Controlling Agency: FAA, Jacksonville ARTCC

Using Agency: U.S. Air Force, 23d Wing, Moody AFB, GA.

Warhawk Low MOA, GA [ESTABLISH]

Boundaries: Beginning at lat. 31°35'30" N., long. 83°23'08" W.;

to lat. 31°35'30" N., long. 83°01'03" W.; to lat. 31°18'41" N., long. 83°44'35" W.; to lat. 31°22'59" N., long. 83°09'40" W.; to lat. 31°29'40" N., long. 83°23'00" W.;

to the point of beginning. Excluding the airspace 1500' AGL and below within 3 NM radius of Douglas Municipal Airport

(DQH).

Altitudes: 1,000 feet AGL up to but not including 8,000 feet MSL.

Times of use: 0800-0100, Monday—Thursday; 0800-2200 Friday; closed

Saturday, Sunday, holidays, other times by NOTAM 6 hours

in advance.

Controlling Agency: FAA, Jacksonville ARTCC

Using Agency: U.S. Air Force, 23d Wing, Moody AFB, GA.

Grand Bay MOA, GA [ESTABLISH]

Boundaries: Beginning at lat. 31°04'01" N., long. 83°01'00" W.;

to lat. 30°51'01" N., long. 83°01'00" W.; to lat. 30°51'01" N., long. 83°08'00" W.; to lat. 30°53'31" N., long. 83°09'00" W.; to lat. 30°54'31" N., long. 83°06'00" W.; to lat. 31°01'31" N., long. 83°06'00" W.; to lat. 31°02'01" N., long. 83°09'00" W.; to lat. 31°04'01" N., long. 83°08'00" W.;

to the point of beginning. Excluding the airspace 1500' AGL

and below within 1 NM radius of N31°02'31.00"

W83°04'15.00".

Altitudes: 100 feet AGL up to but not including 500 feet AGL.

Times of use: 0800-0100, Monday—Thursday; 0800-2200 Friday; closed

Saturday, Sunday, holidays, other times by NOTAM 6 hours

in advance.

Controlling Agency: Moody AFB Radar Approach Control

U.S. Air Force, 23d Wing, Moody AFB, GA. **Using Agency:**

Moody 2 North MOA, GA [MODIFY]

Boundaries: Beginning at lat. 31°18'01" N., long. 82°51'00" W.; to lat. 31°14'01" N., long. 82°49'00" W.; to lat. 31°01'36" N., long. 82°39'00" W.; to lat. 30°57'01" N., long. 82°39'00" W.; to lat. 30°57'01" N., long. 83°01'00" W.; to lat. 31°21'01" N., long. 83°01'00" W.;

> to the point of beginning. Excluding the airspace 1500' AGL and below within 3 NM radius of Homerville Airport (HOE).

Altitudes: 100 feet AGL up to but not including 8,000 feet MSL. Times of use: 0800-0100, Monday-Thursday; 0800-2200 Friday; closed

Saturday, Sunday, holidays, other times by NOTAM 6 hours

in advance.

FAA, Jacksonville ARTCC **Controlling Agency:**

U.S. Air Force, 23d Wing, Moody AFB, GA. **Using Agency:**

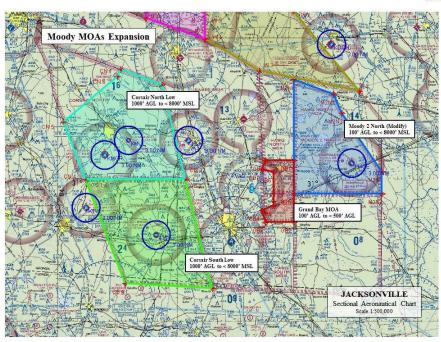
Graphic Description (See attachment)

Comments or recommendations regarding the effect that this proposal may have on the aeronautical activity should be submitted to 9-ESA-OSG-Public-Notice@faa.gov or via postal mail to:

FAA Eastern Service Center Operations Support Group (AJV-E23) Military Liaison Officer 1701 Columbia Avenue College Park, GA 30337

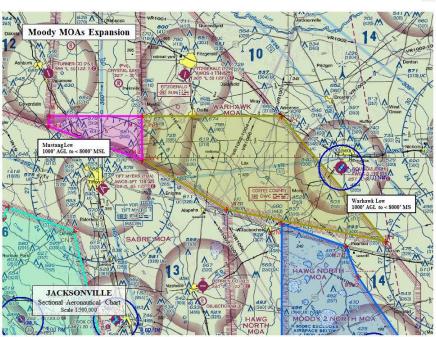
All communications received prior to January 9, 2023, will be considered before final action is taken on this proposal.

Issued in College Park, Georgia, on November 9, 2022.


MATTHEW Digitally signed by MATTHEW N CATHCART CATHCART Date: 2022.11.09 07:47:01 -05'00'

Matthew N. Cathcart

Manager, Operations Support Group


Eastern Service Center, Air Traffic Organization

Attachments

Appendix H H-5

Attachments

6